

Welcome to the SODAR Core documentation!

This documentation provides instructions for integration, usage and development
of reusable SODAR Core apps for projects built on the Django web server.

SODAR (System for Omics Data Access and Retrieval) is a specialized system
for managing data in omics research projects.

The SODAR Core repository containes reusable and non-domain-specific apps
which make up the core of the SODAR system. These apps can be used for any
Django site which wants to make use of one or more of the following features:

	Project-based user access control

	Dynamic app content management

	Advanced project activity logging

	Small file uploading and browsing

	Managing server-side background jobs

	Caching and aggregation of data from external services

	Tracking site information and statistics

Basics of Django site setup and instructions for third party packages used are
considered out of scope for this documentation. Please refer instead to official
documentation of Django and/or the packages in question.

NOTE: When viewing this document in GitLab critical content will by default
be missing. Please click “display source” if you want to read this in GitLab.

NOTE: To view this document in the rendered form during development, run
make html in the docs directory of the repository. You can find the
rendered HTML in docs/build. You will have to install system and Python
dependencies, including ones in requirements/local.txt for this to work. See
SODAR Core Development.

Contents:

	Getting Started
	Repository Contents

	Requirements

	Next Steps

	Projectroles App
	Basics

	Integration

	Settings

	Usage

	Customization

	API Documentation

	Adminalerts App
	Basics

	Installation

	Usage

	Bgjobs App
	Installation

	Usage

	Filesfolders App
	Installation

	Usage

	Userprofile App
	Installation

	Usage

	User Settings

	Siteinfo App
	Basics

	Installation

	Usage

	Sodarcache App
	Installation

	Usage

	API

	Taskflow Backend
	Basics

	Installation

	Usage

	API Documentation

	Timeline App
	Installation

	Usage

	API Documentation

	Development
	General Guidelines

	Project Apps

	Site Apps

	Backend Apps

	SODAR Core

	Breaking Changes
	v0.6.2 (2019-06-21)

	v0.6.1 (2019-06-05)

	v0.6.0 (2019-05-10)

	v0.5.1 (2019-04-16)

	v0.5.0 (2019-04-03)

	v0.4.5 (2019-03-06)

	v0.4.4 (2019-02-19)

	v0.4.3 (2019-01-31)

	v0.4.2 (2019-01-25)

	v0.4.1 (2019-01-11)

	v0.4.0 (2018-12-19)

	v0.3.0 (2018-10-26)

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Basic concepts of SODAR Core apps are detailed in this document.

Repository Contents

The following Django apps will be installed when installing the
django-sodar-core package:

	projectroles: Base app for project access management and dynamic app
content management. All other apps require the integration of projectroles.

	adminalerts: Site app for displaying site-wide messages to all users.

	bgjobs: Project app for managing background jobs.

	siteinfo: Site app for displaying site information and statistics for
administrators.

	sodarcache: Generic caching and aggregation of data referring to external
services.

	taskflowbackend: Backend app providing an API for the optional
sodar_taskflow transaction service.

	timeline: Project app for logging and viewing project-related activity.

	userprofile: Site app for viewing user profiles.

The following packages are included in the repository for development and
as examples:

	config: Example Django site configuration

	docs: Usage and development documentation

	example_backend_app: Example SODAR Core compatible backend app

	example_project_app: Example SODAR Core compatible project app

	example_site: Example/development Django site

	example_site_app: Example SODAR Core compatible site-wide app

	requirements: Requirements for SODAR Core and development

	utility: Setup scripts for development

Requirements

Major requirements for integrating projectroles and other SODAR Core apps into
your Django site and/or participating in development are listed below. For a
complete requirement list, see the requirements and utility directories
in the repository.

	Ubuntu 16.04 Xenial (NOTE: Older releases no longer supported)

	Library requirements (see the utility directory and/or your own Django
project)

	Python 3.6+ (NOTE: Python 3.5 no longer supported)

	Django 1.11.20+ (NOTE: 2.x not currently supported)

	PostgreSQL 9.6+ and psycopg2-binary

	Bootstrap 4.3.1

	JQuery 3.3.1

	Shepherd 1.8.1 with Tether 1.4.4

	Clipboard.js 2.0.0

	DataTables 1.10.18 with JQuery UI, FixedColumns, FixedHeader, Buttons,
KeyTables

For more detailed instructions on what to install for local development, see
SODAR Core Development.

Next Steps

To proceed with using the SODAR Core framework in your Django site, you must
first install and integrate the projectroles app. See the
projectroles app documentation for instructions.

Once projectroles has been integrated into your site, you may proceed to
install other apps as needed.

Projectroles App

The projectroles app is the base app for building a SODAR Core based Django
site. It provides a framework for project access management, dynamic content
including with django-plugins, models and tools for SODAR-compatible apps plus a
default template and CSS layout.

Other Django apps which intend to use aforementioned functionalities depend on
projectroles. While inclusion of other SODAR Core apps can be optional, having
projectroles installed is mandatory for working with the SODAR project and
app structure.

Contents:

	Basics
	Projects

	User Roles in Projects

	Remote Project Sync

	Rule System

	Plugins

	Other Features

	Templates and Styles

	Integration
	Installation on a New Site
	SODAR Django Site Template (Recommended)

	Cookiecutter-Django

	Installation on an Existing Site
	Django Settings

	User Configuration

	URL Configuration

	Base Template for Your Django Site

	Site Error Templates

	All Done!

	Settings
	Site Package and Paths

	Apps

	Database

	Templates

	Email

	Authentication

	Django REST Framework

	General Site Settings

	Projectroles Settings

	Optional Projectroles Settings

	Backend App Settings

	SODAR API Settings (Optional)

	LDAP/AD Configuration (Optional)

	Modifying SODAR_CONSTANTS (Optional)

	Logging (Optional)

	Usage
	Logging In

	User Interface
	Basics

	Home View

	Project Detail View

	Category and Project Management
	Creating a Top Level Category

	Creating Projects

	Updating Projects

	App Settings

	Member Management
	Adding Members

	Modifying Members

	Invites

	Remote Projects
	As Source Site

	As Target Site

	Search

	Customization
	CSS Overrides
	Static Element Coloring

	Sidebar Width

	Title Bar

	Additional Title Bar Links

	Site Icon

	Project Breadcrumb

	Footer

	Project and Category Display Names

	API Documentation
	Plugins

	Models

	App Settings

	Common Template Tags

	Utilities

Projectroles Basics

The basic concepts and functionalities of the projectroles app are detailed
in this document.

Projects

The projectroles app groups project-specific data, user access roles and other
features into projects and categories. These can be nested in a tree
structure with the category type working as a container for sub-projects with
no project content of its own.

User Roles in Projects

User access to projects is granted by per-project assigning of roles. In each
project, a user can have one role at a time. New types of roles can be defined
by extending the default model’s database table.

The default setup of role types used in SODAR sites:

	
	project owner

	
	Full read/write access to project data and roles

	Can create sub-projects under owned categories

	One per project

	Must be specified upon project creation

	
	project delegate

	
	Full read/write access to project data

	Can modify roles except for owner and delegate

	One per project (as default, the limit can be increased in site settings)

	Assigned by owner

	
	project contributor

	
	Can read and write project data

	Can modify and delete own data

	
	project guest

	
	Read only access to project data

Note

Django superuser status overrides project role access.

The projectroles app provides the following features for managing user roles in
projects:

	Adding/modifying/removing site users as project members

	Inviting people not yet using the site by email

	Importing members from other projects (NOTE: disabled pending update)

	Automated emailing of users regarding role changes

	Mirroring user roles to/from an external projectroles-enabled site

Note

Currently, only superusers can assign owner roles for top-level categories.

Remote Project Sync

SODAR Core allows optionally reading and synchronizing project metadata between
multiple SODAR-based Django sites. A superuser is able to set desired levels of
remote access for specific sites on a per-project basis.

A SODAR site must be set in either source or target mode.

	Source site is one expecting to (potentially) serve project metadata to
an arbitrary number of other SODAR sites.

	Target site can be linked with exactly one source site, from which it
can retrieve project metadata. Creation of local projects can be enabled or
disabled according to local configuration.

Among the data which can be synchronized:

	General project information such as title, description and readme

	Project category structure

	User roles in projects

	User accounts for LDAP/AD users (required for the previous step)

Rule System

Projectroles uses the django-rules [https://github.com/dfunckt/django-rules]
package to manage permissions for accessing data, apps and functionalities
within projects based on the user role. Predicates for project roles are
provided by the projectroles app and can be used and extended for developing
rules for your other project-specific Django apps.

Plugins

Projectroles provides a plugin framework to enable integrating apps and
content dynamically to a projectroles-enabled Django site. Types of plugins
currently included:

	Project apps: Apps tied to specific projects, making use of project roles,
rules and other projectroles functionalities.

	Site apps: Site-wide Django apps which are not project-specific

	Backend apps: Backend apps without GUI entry points or (usually) views,
imported and used dynamically by other SODAR-based apps for e.g. connectivity
to external resources.

Existing apps can be modified to conform to the plugin structure by implementing
certain variables, functions, views and templates within the app. For more
details, see the app development documents.

Other Features

Other features in the projectroles app:

	App settings: Setting values for project or user specific variables,
which can be defined in project app plugins

	Project starring: Ability for users to star projects as their favourites

	Project search: Functionality for searching data within projects using
functions implemented in project app plugins

	Tour help: Inline help for pages

	Project readme: README document for each project with Markdown support

	Custom user model: Additions to the standard Django user model

	Multi-Domain LDAP/AD support: Support for LDAP/AD users from multiple
domains

	SODAR Taskflow and SODAR Timeline integration: Included but disabled
unless backend apps for Taskflow and Timeline are integrated in the Django
site

Templates and Styles

Projectoles provides views and templates for all GUI-related functionalities
described above. The templates utilize the plugin framework to provide content
under projects dynamically. The project also provides default CSS stylings, base
templates and a base layout which can be used or adapted as needed. See the
usage and app development documentation for more details.

Projectroles Integration

This document provides instructions and guidelines for integrating projectroles
and other SODAR Core apps into your Django site.

Installation on a New Site

If you want to set up a new site for integrating projectroles, see the
recommended options in this section.

SODAR Django Site Template (Recommended)

When setting up a new SODAR Core based site, it is strongly recommended to use
sodar_django_site [https://github.com/bihealth/sodar_django_site]
as a template. The repository contains a minimal Django site pre-configured with
projectroles and other SODAR Core apps. The master branch of this project always
integrates the latest stable release of SODAR Core and projectroles.

To set up your site with this template, clone the repository and follow the
installation instructions in the README.rst file.

To modify default SODAR Core and projectroles settings, see the
Projectroles Django Settings document.

Once you have your site set up, you can look into
customization tips and start
developing your SODAR Core compatible apps.

Cookiecutter-Django

If the SODAR Django site template does not suit your needs, it is also possible
to set up your site using cookiecutter-django [https://github.com/pydanny/cookiecutter-django/releases/tag/1.11.10].
In this case, follow the instructions in the following section as if you were
integrating SODAR Core to an existing Django site.

Warning

Currently, SODAR Core only supports Django 1.11.x, while the latest versions
of cookiecutter-django set up Django 2.0.x by default. It is strongly
recommended to use Django 1.11 LTS for time being. Compatibility with 2.0 and
upwards is not guaranteed! Integration into the last official
1.11 release [https://github.com/pydanny/cookiecutter-django/releases/tag/1.11.10]
of cookiecutter-django has been tested and verified to be working.

Note

The latest cookiecutter-django 1.11 release has dependencies which are
already out of date. Please update them to match the requirements of the
django-sodar-core package.

Note

For any other issues regarding the cookiecutter-django setup, see the
cookiecutter-django documentation.

Installation on an Existing Site

Instructions for setting up projectroles and SODAR Core on an existing Django
site or a fresh site generated with cookiecutter-django are detailed in this
chapter.

Warning

In order to successfully set up projectroles, you are expected to follow
all the instructions here in the order they are presented. Please note
that leaving out steps may result in a non-working Django site! Attempting
to run the site before implementing all of the steps may (and probably will)
result in errors.

Warning

The rest of this section assumes that your Django project has been set up
sing a 1.11 release of cookiecutter-django [https://github.com/pydanny/cookiecutter-django/releases/tag/1.11.10].
Otherwise details such as directory structures and settings variables may
differ.

First, add the django-plugins and django-sodar-core package requirements
into your requirements/base.txt file. Make sure you are pointing to the
desired release tag.

-e git://github.com/mikkonie/django-plugins.git@1bc07181e6ab68b0f9ed3a00382eb1f6519e1009#egg=django-plugins
-e git://github.com/bihealth/sodar_core.git@v0.4.2#egg=django-sodar-core

Install the requirements for development:

$ pip install -r requirements/local.txt

If any version conflicts arise between django-sodar-core and your existing site,
you will have to resolve them before continuing.

Hint

You can always refer to either the sodar_django_site repository or
example_site in the SODAR Core repository for a working example of a
Cookiecutter-based Django site integrating SODAR Core. However, note that
some aspects of the site configuration may vary depending on the
cookiecutter-django version used on your site.

Django Settings

Next you need to modify your default Django settings file, usually located in
config/settings/base.py. For sites created with an older cookiecutter-django
version the file name may also be common.py. Naturally, you should make sure
no settings in other configuration files conflict with ones set here.

For values retrieved from environment variables, make sure to configure your
env accordingly. For development and testing, using READ_DOT_ENV_FILE is
recommended.

Required and optional Django settings are described in the
Projectroles Django Settings document.

User Configuration

In order for SODAR Core apps to work on your Django site, you need to extend the
default user model.

Extending the User Model

In a cookiecutter-django project, an extended user model should already exist
in {SITE_NAME}/users/models.py. The abstract model provided by the
projectroles app provides the same model with critical additions, most notably
the sodar_uuid field used as an unique identifier for SODAR objects
including users.

If you have not added any of your own modifications to the model, you can simply
replace the existing model extension with the following code:

from projectroles.models import SODARUser

class User(SODARUser):
 pass

If you need to add your own extra fields or functions (or have existing ones
already), you can add them in this model.

After updating the user model, create and run database migrations.

$./manage.py makemigrations
$./manage.py migrate

Note

You probably will need to edit the default unit tests under
{SITE_NAME}/users/tests/ for them to work after making these changes.
See example_site.users.tests in this repository for an example.

Populating UUIDs for Existing Users

When integrating projectroles into an existing site with existing users, the
sodar_uuid field needs to be populated. See
instructions in Django documentation [https://docs.djangoproject.com/en/1.11/howto/writing-migrations/#migrations-that-add-unique-fields]
on how to create the required migrations.

Synchronizing User Groups for Existing Users

To set up user groups for existing users, run the syncgroups management
command.

$./manage.py syncgroups

User Profile Site App

The userprofile site app is installed with SODAR Core. It adds a user
profile page in the user dropdown. Use of the app is not mandatory but
recommended, unless you are already using some other user profile app. See
the userprofile app documentation for instructions.

Add Login Template

You should add a login template to {SITE_NAME}/templates/users/login.html. If
you’re OK with using the projectroles login template, the file can consist of
the following line:

{% extends 'projectroles/login.html' %}

If you intend to use projectroles templates for user management, you can delete
other existing files within the directory.

URL Configuration

In the Django URL configuration file, usually found in config/urls.py, add
the following lines under urlpatterns to include projectroles URLs in your
site.

urlpatterns = [
 # ...
 url(r'api/auth/', include('knox.urls')),
 url(r'^project/', include('projectroles.urls')),
]

If you intend to use projectroles views and templates as the basis of your site
layout and navigation (which is recommended), also make sure to set the site’s
home view accordingly:

from projectroles.views import HomeView

urlpatterns = [
 # ...
 url(r'^$', HomeView.as_view(), name='home'),
]

Finally, make sure your login and logout links are correctly linked. You can
remove any default allauth URLs if you’re not using it.

from django.contrib.auth import views as auth_views

urlpatterns = [
 # ...
 url(r'^login/$', auth_views.LoginView.as_view(
 template_name='users/login.html'), name='login'),
 url(r'^logout/$', auth_views.logout_then_login, name='logout'),
]

Base Template for Your Django Site

In order to make use of Projectroles views and templates, you should set the
base template of your site accordingly in {SITE_NAME}/templates/base.html.

For a supported example, see projectroles/base_site.html. It is strongly
recommended to use this as the base template for your site, either by extending
it or copying the content into {SITE_NAME}/templates/base.html and modifying
it to suit your needs.

If you do not need to make any modifications, the most simple way is to replace
the content of the {SITE_NAME}/templates/base.html file with the following
line:

{% extends 'projectroles/base_site.html' %}

Note

CSS and Javascript includes in site_base.html are mandatory for
Projectroles-based views and functionalities.

Note

The container structure defined in the example base.html, along with
including the {STATIC}/projectroles/css/projectroles.css are
mandatory for Projectroles-based views to work without modifications.

Site Error Templates

The projectroles app contains default error templates to use on your site.
These are located in the projectroles/error/ template directory. You can
use them by entering {% extends 'projectroles/error/*.html %} in the
corresponding files found in the {SITE_NAME}/templates/ directory. You have
the options of extending or replacing content on the templates, or simply
implementing your own.

All Done!

After following all the instructions above, you should have a working Django
site with Projectroles access control and support for SODAR app. To test the
site locally execute the supplied shortcut script:

$./run.sh

Or, run the standard Django runserver command:

$./manage.py runserver

You can now browse your site locally at http://127.0.0.1:8000. You are
expected to log in to view the site. Use e.g. the superuser account you created
when setting up your cookiecutter-django site.

You can now continue on to create apps or modify your existing apps to be
compatible with the SODAR Core framework. See the
development section for app development guides. Also see the
customization documentation for tips for
modifying the default appearance of SODAR Core.

Projectroles Django Settings

This document describes the Django settings for the projectroles app, which
also control the configuration of other apps in a SODAR Core based site.

These settings are usually found in config/settings/*.py, with
config/settings/base.py being the default configuration other files may
override or extend.

If your site is based on sodar_django_site, mandatory settings are already
set to their default values. In that case, you only need to modify or customize
them where applicable.

If you are integrating django-sodar-core with an existing Djagno site or
building your site from scratch without the recommended template, make sure to
add all mandatory settings into your project.

For values retrieved from environment variables, make sure to configure your
env accordingly. For development and testing, using DJANGO_READ_DOT_ENV_FILE
is recommended.

Site Package and Paths

The site package and path configuration should be found at the beginning of the
default configuration file. Substitute {SITE_NAME} with the name of your site
package.

import environ
SITE_PACKAGE = '{SITE_NAME}'
ROOT_DIR = environ.Path(__file__) - 3
APPS_DIR = ROOT_DIR.path(SITE_PACKAGE)

Apps

Apps installed from django-sodar-core are placed in THIRD_PARTY_APPS. The
following apps need to be included in the list in order for SODAR Core to work:

THIRD_PARTY_APPS = [
 # ...
 'crispy_forms',
 'rules.apps.AutodiscoverRulesConfig',
 'djangoplugins',
 'pagedown',
 'markupfield',
 'rest_framework',
 'knox',
 'projectroles.apps.ProjectrolesConfig',
 'dal',
 'dal_select2',
]

Database

Under DATABASES, the setting below is recommended:

DATABASES['default']['ATOMIC_REQUESTS'] = False

Note

If this conflicts with your existing set up, you can modify the code in your
other apps to use e.g. @transaction.atomic.

Note

This setting mostly is used for the sodar_taskflow transactions
supported by projectroles but not commonly used, so having this setting as
True may cause no issues. However, it is not officially supported at this
time.

Templates

Under TEMPLATES['OPTIONS']['context_processors'], add the projectroles URLs
processor:

'projectroles.context_processors.urls_processor',

Email

Under EMAIL_CONFIGURATION or EMAIL, configure email settings:

EMAIL_SENDER = env('EMAIL_SENDER', default='noreply@example.com')
EMAIL_SUBJECT_PREFIX = env('EMAIL_SUBJECT_PREFIX', default='')

Authentication

AUTHENTICATION_BACKENDS should contain the following backend classes:

AUTHENTICATION_BACKENDS = [
 'rules.permissions.ObjectPermissionBackend',
 'django.contrib.auth.backends.ModelBackend',
]

Note

The default setup by cookiecutter-django adds the allauth package. This
can be left out of the project if not needed, as it mostly provides adapters
for e.g. social media account logins. If removing allauth, you can also
remove unused settings variables starting with ACCOUNT_*.

The following settings remain in your auth configuration:

AUTH_USER_MODEL = 'users.User'
LOGIN_REDIRECT_URL = 'home'
LOGIN_URL = 'login'

Django REST Framework

To enable djangorestframework API views and knox authentication, these
values should be added under DEFAULT_AUTHENTICATION_CLASSES:

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'rest_framework.authentication.BasicAuthentication',
 'rest_framework.authentication.SessionAuthentication',
 'knox.auth.TokenAuthentication',
),
}

General Site Settings

For display in projectroles based templates, customize related variables to
describe your site. SITE_INSTANCE_TITLE may be used to e.g. differentiate
between site versions used for deployment or staging, use in different
organizations, etc.

SITE_TITLE = 'Name of Your Project'
SITE_SUBTITLE = env.str('SITE_SUBTITLE', 'Beta')
SITE_INSTANCE_TITLE = env.str('SITE_INSTANCE_TITLE', 'Deployment Instance Name')

Projectroles Settings

Mandatory projectroles app settings are explained below:

	PROJECTROLES_SITE_MODE: Site mode for remote project metadata
synchronization, either SOURCE (allow others to read local projects) or
TARGET (read projects from another site)

	PROJECTROLES_TARGET_CREATE: Whether or not local projects can be created
if site is in TARGET mode. If your site is in SOURCE mode, this
setting has no effect.

	PROJECTROLES_INVITE_EXPIRY_DAYS: Days until project email invites expire
(int)

	PROJECTROLES_SEND_EMAIL: Enable/disable email sending (bool)

	PROJECTROLES_ENABLE_SEARCH: Whether you want to enable SODAR search on
your site (boolean)

	PROJECTROLES_DEFAULT_ADMIN: User name of the default superuser account
used in e.g. replacing an unavailable user or performing backend admin
commands (string)

Example:

Projectroles app settings
PROJECTROLES_SITE_MODE = env.str('PROJECTROLES_SITE_MODE', 'TARGET')
PROJECTROLES_TARGET_CREATE = env.bool('PROJECTROLES_TARGET_CREATE', True)
PROJECTROLES_INVITE_EXPIRY_DAYS = env.int('PROJECTROLES_INVITE_EXPIRY_DAYS', 14)
PROJECTROLES_SEND_EMAIL = env.bool('PROJECTROLES_SEND_EMAIL', False)
PROJECTROLES_ENABLE_SEARCH = True
PROJECTROLES_DEFAULT_ADMIN = env.str('PROJECTROLES_DEFAULT_ADMIN', 'admin')

Optional Projectroles Settings

The following projectroles settings are optional:

	PROJECTROLES_SECRET_LENGTH: Character length of secret token used in
projectroles (int)

	PROJECTROLES_SEARCH_PAGINATION: Amount of search results per each app to
display on one page (int)

	PROJECTROLES_HELP_HIGHLIGHT_DAYS: Days for highlighting tour help for new
users (int)

	PROJECTROLES_DISABLE_CATEGORIES: If set True, disable categories and only
allow a list of projects on the root level (boolean) (see note)

	PROJECTROLES_HIDE_APP_LINKS: Apps hidden from the project sidebar and
dropdown menus for non-superusers. The app views and URLs are still
accessible. The names should correspond to the name property in each
project app’s plugin (list)

	PROJECTROLES_DELEGATE_LIMIT: The number of delegate roles allowed per
project. The amount is limited to 1 per project if not set, unlimited if set
to 0. Will be ignored for remote projects synchronized from a source site
(int)

	PROJECTROLES_BROWSER_WARNING: If true, display a warning to users using
Internet Explorer (bool)

	PROJECTROLES_ALLOW_LOCAL_USERS: If true, roles for local non-LDAP users
can be synchronized from a source during remote project sync if they exist on
the target site. Similarly, local users will be selectable in member dropdowns
when selecting users (bool)

Example:

Projectroles app settings
...
PROJECTROLES_SECRET_LENGTH = 32
PROJECTROLES_SEARCH_PAGINATION = 5
PROJECTROLES_HELP_HIGHLIGHT_DAYS = 7
PROJECTROLES_DISABLE_CATEGORIES = True
PROJECTROLES_HIDE_APP_LINKS = ['filesfolders']
PROJECTROLES_DELEGATE_LIMIT = 1
PROJECTROLES_BROWSER_WARNING = True
PROJECTROLES_ALLOW_LOCAL_USERS = True

Warning

Regarding PROJECTROLES_DISABLE_CATEGORIES: In the current SODAR core
version remote site access and remote project synchronization are disabled
if this option is used! Use only if a simple project list is specifically
required in your site.

Warning

Regarding PROJECTROLES_ALLOW_LOCAL_USERS: Please note that this will
allow synchronizing project roles to local non-LDAP users based on their
user name. You should personally ensure that the users in question are
authorized for these roles. Furthermore, only roles for existing local
users will be synchronized. New local users will have to be added manually
through the Django admin or shell on the target site.

Backend App Settings

The ENABLED_BACKEND_PLUGINS settings lists backend plugins implemented using
BackendPluginPoint which are enabled in the configuration. For more
information see Backend App Development.

ENABLED_BACKEND_PLUGINS = env.list('ENABLED_BACKEND_PLUGINS', None, [])

SODAR API Settings (Optional)

There are also settings for providing and extending the general SODAR API,
which is currently in development.

The API uses accept header versioning. The SODAR_API_MEDIA_TYPE setting is
by default set to the SODAR Core API media type, but should preferably be
changed to your organization and API identification if API views are modified or
introduced. The SODAR_API_DEFAULT_HOST setting should post to the externally
visible host of your server and be configured in your environment settings.

These settings are optional. Default values will be used if they are unset.

Example:

SODAR_API_DEFAULT_VERSION = '0.1'
SODAR_API_ACCEPTED_VERSIONS = [SODAR_API_DEFAULT_VERSION]
SODAR_API_MEDIA_TYPE = 'application/vnd.bihealth.sodar-core+json' # Change this
SODAR_API_DEFAULT_HOST = SODAR_API_DEFAULT_HOST = env.url('SODAR_API_DEFAULT_HOST', 'http://0.0.0.0:8000')

LDAP/AD Configuration (Optional)

If you want to utilize LDAP/AD user logins as configured by projectroles, you
can add the following configuration. Make sure to also add the related env
variables to your configuration.

This part of the setup is optional.

Note

In order to support LDAP, make sure you have installed the dependencies from
utility/install_ldap_dependencies.sh and requirements/ldap.txt! For
more information see SODAR Core Development.

Note

If only using one LDAP/AD server, you can leave the “secondary LDAP server”
values unset.

ENABLE_LDAP = env.bool('ENABLE_LDAP', False)
ENABLE_LDAP_SECONDARY = env.bool('ENABLE_LDAP_SECONDARY', False)

if ENABLE_LDAP:
 import itertools
 import ldap
 from django_auth_ldap.config import LDAPSearch

 # Default values
 LDAP_DEFAULT_CONN_OPTIONS = {ldap.OPT_REFERRALS: 0}
 LDAP_DEFAULT_FILTERSTR = '(sAMAccountName=%(user)s)'
 LDAP_DEFAULT_ATTR_MAP = {
 'first_name': 'givenName',
 'last_name': 'sn',
 'email': 'mail',
 }

 # Primary LDAP server
 AUTH_LDAP_SERVER_URI = env.str('AUTH_LDAP_SERVER_URI', None)
 AUTH_LDAP_BIND_DN = env.str('AUTH_LDAP_BIND_DN', None)
 AUTH_LDAP_BIND_PASSWORD = env.str('AUTH_LDAP_BIND_PASSWORD', None)
 AUTH_LDAP_CONNECTION_OPTIONS = LDAP_DEFAULT_CONN_OPTIONS

 AUTH_LDAP_USER_SEARCH = LDAPSearch(
 env.str('AUTH_LDAP_USER_SEARCH_BASE', None),
 ldap.SCOPE_SUBTREE,
 LDAP_DEFAULT_FILTERSTR,
)
 AUTH_LDAP_USER_ATTR_MAP = LDAP_DEFAULT_ATTR_MAP
 AUTH_LDAP_USERNAME_DOMAIN = env.str('AUTH_LDAP_USERNAME_DOMAIN', None)
 AUTH_LDAP_DOMAIN_PRINTABLE = env.str(
 'AUTH_LDAP_DOMAIN_PRINTABLE', AUTH_LDAP_USERNAME_DOMAIN
)

 AUTHENTICATION_BACKENDS = tuple(
 itertools.chain(
 ('projectroles.auth_backends.PrimaryLDAPBackend',),
 AUTHENTICATION_BACKENDS,
)
)

 # Secondary LDAP server (optional)
 if ENABLE_LDAP_SECONDARY:
 AUTH_LDAP2_SERVER_URI = env.str('AUTH_LDAP2_SERVER_URI', None)
 AUTH_LDAP2_BIND_DN = env.str('AUTH_LDAP2_BIND_DN', None)
 AUTH_LDAP2_BIND_PASSWORD = env.str('AUTH_LDAP2_BIND_PASSWORD', None)
 AUTH_LDAP2_CONNECTION_OPTIONS = LDAP_DEFAULT_CONN_OPTIONS

 AUTH_LDAP2_USER_SEARCH = LDAPSearch(
 env.str('AUTH_LDAP2_USER_SEARCH_BASE', None),
 ldap.SCOPE_SUBTREE,
 LDAP_DEFAULT_FILTERSTR,
)
 AUTH_LDAP2_USER_ATTR_MAP = LDAP_DEFAULT_ATTR_MAP
 AUTH_LDAP2_USERNAME_DOMAIN = env.str('AUTH_LDAP2_USERNAME_DOMAIN')
 AUTH_LDAP2_DOMAIN_PRINTABLE = env.str(
 'AUTH_LDAP2_DOMAIN_PRINTABLE', AUTH_LDAP2_USERNAME_DOMAIN
)

 AUTHENTICATION_BACKENDS = tuple(
 itertools.chain(
 ('projectroles.auth_backends.SecondaryLDAPBackend',),
 AUTHENTICATION_BACKENDS,
)
)

Modifying SODAR_CONSTANTS (Optional)

String identifiers used globally in SODAR project management are defined in the
SODAR_CONSTANTS dictionary. It can be imported into your app code with the
import:

from projectroles.models import SODAR_CONSTANTS

If you need to update or extend the constants for use your site, you can import
the default dictionary into your Django settings and modify it as necessary with
the following snippet:

from projectroles.constants import get_sodar_constants
SODAR_CONSTANTS = get_sodar_constants(default=True)
Your changes here..

Warning

Modifying existing default constants may result in unwanted issues,
especially on a site which already contains created projects. Proceed with
caution!

Logging (Optional)

It is recommended to add “projectroles” under LOGGING['loggers']. For
production, INFO debug level is recommended.

Projectroles Usage

This document provides instructions for using the projectroles app which has
been integrated into your Django site.

Hint

Detailed instructions for many pages can be found in an interactive tour by
clicking the “Help” link in the right side of the top navigation bar.

Before reading this document, be sure to see Projectroles Basics for
basic concepts regarding the use of this app.

Logging In

Apart from specific public or token-enabled views, user login is mandatory
for using a SODAR Core based Django site.

One can either log in using a local Django user or, if LDAP/AD is enabled, their
LDAP/AD credentials from a supported site. In the latter case, the user domain
must be appended to the user name in form of user@DOMAIN.

[image: _images/sodar_login.png]
SODAR login form

User Interface

Basics

Upon loggin into a SODAR Core based Django site using default templates and CSS,
the general view of your site is split into the following elements:

	Top navigation bar: Contains the site logo and title, search element,
help link and the user dropdown menu.

	User dropown menu: Contains links to user management, admin site and
site-wide apps the user has access to.

	Project sidebar: Shortcuts to project apps and project management pages

	Project navigation: Project structure breadcrumb (disabled for site apps)

	Content: Actual app content goes in this element

	Footer: Optional footer with e.g. site info and version

[image: _images/sodar_home.png]
Home view

[image: _images/sodar_user_dropdown.png]
User dropdown

Home View

As content within a SODAR Core based site is by default sorted into projects,
the home view displays a tree view of categories and projects to choose from.
You can filter the list with a search term or restrict display to your starred
projects.

Project Detail View

The project detail page dynamically imports elements from installed project
apps, usually showing e.g. overview of latest additions to app data, statistics
and/or shortcuts to app functionalities. Here you can also access project apps
from the project sidebar. For project apps, the sidebar link leads to the app
entry point view as defined in the app plugin.

For each page in a project app which extends the default projectroles template
layout, the project title bar is displayed on the top of the page. This
contains the project title and description and a link to “star” the project into
your favourites. Below this, the project app title bar with possible
app-specific controls is usually displayed.

[image: _images/sodar_project_detail.png]
Project detail view

Category and Project Management

In SODAR based sites, data is split into categories and projects.
Categories may be freely nested and are used as containers of projects. They
may contain a description and readme, but project apps and user roles beyond
owner are disabled for categories. Projects can not be nested within each other.

Creating a Top Level Category

Currently, only users with a superuser status can create a top level category.
This can be done by navigating to the home view and clicking the
Create Category link. To create a category, a name and owner must be
supplied, along with optional description and/or a readme document. All of these
may be modified later.

Note

Currently, only users already previously logged into the system can be added
as the owner of a category or project. The ability to invite users not yet
on the site as owners will be added later.

Hint

When setting up a new site, think about what kind of category and project
structure makes sense for your team and organization. Moving projects and
categories under different categories is possible, but is not recommended
and can currently only be done via the admin view or directly in the Django
shell.

[image: _images/sodar_category_create.png]
Category/project creation form

Creating Projects

Once navigating into a category, a user with sufficient access will see the
Create Project or Category link in the side bar. This opens up a form for
adding a project or a nested category under the current category. The form is
identical to top level category creation, except that you can also choose
between creating a project or a category.

Updating Projects

An existing project or category can be updated from the
Update Project/Category link in the side bar. Again, a similar form as
before will be presented to the user.

[image: _images/sodar_project_update.png]
Category/project updating form

App Settings

Project apps may define project or user specific settings, modifiable by users
with sufficient project access. Widgets for project specific settings will show
up in the project creation and updating form. User specific settings will be
displayed in the Userpforile app.

Note

Currently, project specific app settings are also enabled for categories but
do not actually do anything. The behaviour regarding this (remove settings /
inherit by nested projects / etc) is TBD.

Member Management

Project member roles can be viewed and modified through the Project Members
link on the sidebar. Modification requires a sufficient role in the project
(owner or delegate) or superuser status.

[image: _images/sodar_role_list.png]
Project member list view

Adding Members

There are two ways to add new members to a project:

	Add Member is used to add member roles to system users.

	Invite Member is used to send email invites to users not yet registered
in the system.

Addition or modification of users sends an email notification to the user in
question if email sending is enabled on your Django server. The emails can be
previewed in corresponding forms.

Hint

As of SODAR Core v0.4.5, it is also possible to create an invite in the “add
member” form. Inviting is enabled when inputting an email address not found
among the system users.

Modifying Members

Changing or removing user roles can be done from links next to each role on the
member list. The exception for this is the project owner role which can only
be modified on the Update Project page.

Invites

Invites are accepted by the responding user clicking on a link supplied in their
invite email and logging in to the site with their LDAP/AD credentials. Invites
expire after a certain time and can be reissued or revoked on the
Project Invites page.

Remote Projects

It is possible to sync project metadata and member roles between multiple SODAR
Core based Django sites. Remote sites and access can be managed in the
Remote Site Access site app, found in the user dropdown menu in the top
navigation bar.

In the current implementation, your django site must either be in source or
target mode. A source site can define one or multiple target sites where
project data can be provided. A target site can define exactly one source site,
from which project data can be retrieved from.

Note

These are arbitrary restrictions which may be relaxed in the future, if use
cases warrant it.

To enable remote project data reading, you must first set up either a target
or a source site depending on the role of your own SODAR site.

[image: _images/sodar_remote_sites.png]
Remote site list in source mode

As Source Site

Navigate to the Remote Site Access site app and click on the
Add Target Site link. You will be provided with a form for specifying the
remote site. A secret string is generated automatically and you need to provide
this to the administrator of the target site in question for accessing your
site.

Once created, you can access the list of projects on your site in regards to the
created target site. For each project, you may select an access level, of which
two are currently implemented:

	No access: No access on the remote site (default)

	Read roles: This allows for the target site to read project metadata and
user roles in order to synchronize project access remotely.

Note

The read roles access level also provides metadata of the categories above
the selected project so that the project structure can be maintained.

Note

Only LDAP/AD user roles and local administrator owner roles are provided
to the target site. Other local user roles are ignored.

Note

Access levels for purely checking the existence of the project and only
reading project metadata (title, description..) without member roles are
implemented in the data model and backend, but currently disabled in the UI.

Once desired access to specific projects has been granted and confirmed, the
target site will sync the data by sending a request to the source site.

[image: _images/sodar_remote_projects.png]
Remote project list in source mode

As Target Site

The source site should be set up as above using the Set Source Site link,
using the provided secret string as the access token.

After creating the source site, remote project metadata and member roles (for
which access has been granted) can be accessed using the Synchronize link.

Alternatively, the following management command can be used:

$./manage.py syncremote

Note

If categories or projects with the same name within the same parent exist
under a different UUID, they or their child projects will not be
synchronized.

Note

If a local user is the owner of a synchronized project on the source site,
the user defined in the PROJECTROLES_DEFAULT_ADMIN will be given the
owner role. Hence you must have this setting defined if you are
implementing a SODAR site in target mode.

Search

The search form is displayed in the top navigation bar if enabled. It currently
takes one string as a search parameter, followed by optional keyword argument.
At this time, the keyword of type has been implemented, used to limit the
search to a certain data type as specified in app plugins.

Search results are split into results from different apps. For example, entering
test will return all objects from all apps containing this string.
Alternatively, entering test type:project will provide results from any app
configured to produce results of type project. By default, this will result in
the projectroles app listing projects which contain the search string in their
name and/or description.

Note

Multiple search terms, complex search strings, full-text search and
additional keywords/operators will be defined in the future.

Projectroles Customization

Here you can find some customization instructions and tips for projectroles and
SODAR Core.

CSS Overrides

If some of the CSS definitions in {STATIC}/projectroles/css/projectroles.css
do not suit your purposes, it is possible to override them in your own includes.
It is still recommended to include the “Flexbox page setup” section as
provided.

In this chapter are examples of overrides you can place e.g. in project.css
to change certain defaults.

Hint

While not explicitly mentioned, some parameters may require the
!important argument to take effect on your site.

Warning

In the future we may instead offer a full Bootstrap 4 theme, which may
deprecate current overriding/extending CSS classes.

Static Element Coloring

If you wish to recolor the background of the static elements on the page
(title bar, side bar and project navigation breadcrumb), add the following
CSS overrides.

.sodar-base-navbar, .sodar-pr-sidebar, .sodar-pr-sidebar-nav {
 background-color: #ff00ff;
}

.sodar-pr-navbar {
 background-color: #00ff00;
}

Sidebar Width

If the sidebar is not wide enough for your liking or e.g. a name of an app
overflowing, the sidebar can be resized with the following override:

.sodar-pr-sidebar {
 width: 120px;
}

Title Bar

You can implement your own title bar by replacing the default base.html include
of projectroles/_site_titlebar.html with your own HTML or include.

When doing this, it is possible to include elements from the default title bar
separately:

	Search form: projectroles/_site_titlebar_search.html

	Site app and user operation dropdown:
projectroles/_site_titlebar_dropdown.html

See the templates themselves for further instructions.

Additional Title Bar Links

If you want to add additional links not related to apps in the title bar, you
can implement in the template file
{SITE_NAME}/templates/include/_titlebar_nav.html. This can be done for e.g.
documentation links or linking to external sites. Example:

{# Example extra link #}
<li class="nav-item">

 <i class="fa fa-fw fa-question-circle"></i> Extra Link

Site Icon

An optional site icon can be placed into {STATIC}/images/logo_navbar.png to
be displayed in the default Projectroles title bar.

Project Breadcrumb

To add custom content in the end of the default project breadcrumb, use
{% block nav_sub_project_extend %} in your app template.

The entire breadcrumb element can be overridden by declaring
{% block nav_sub_project %} block in your app template.

Footer

Footer content can be specified in the optional template file
{SITE_NAME}/templates/include/_footer.html.

Project and Category Display Names

If the project and category labels don’t match your use case, it is possible
to change the labels displayed to the user by editing SODAR_CONSTANTS in
your Django site settings file. Example:

SODAR_CONSTANTS = get_sodar_constants(default=True)
SODAR_CONSTANTS['DISPLAY_NAMES']['CATEGORY'] = {
 'default': 'not-a-category',
 'plural': 'non-categories',
}
SODAR_CONSTANTS['DISPLAY_NAMES']['PROJECT'] = {
 'default': 'not-a-project',
 'plural': 'non-projects',
}

See more about overriding SODAR_CONSTANTS
here.

To print out these values in your views or templates, call the
get_display_name() function, which is available both as a template tag
through projectroles_common_tags.py and a general utility function in
utils.py. Capitalization and pluralization are handled by the function
according to arguments.
See the API documentation for details.

Note

These changes will not affect role names or IDs and descriptions of
Timeline events.

Projectroles API Documentation

This document contains API documentation for the projectroles app. Included
are functionalities and classes intended to be used by other applications.

Plugins

SODAR plugin point definitions and helper functions for plugin retrieval are
detailed in this section.

Plugin point definitions and plugin API for apps based on projectroles

	
class projectroles.plugins.BackendPluginPoint

	Projectroles plugin point for registering backend apps

	
get_api()

	Return API entry point object.

	
get_statistics()

	Return backend statistics as a dict. Should take the form of
{id: {label, value, url (optional), description (optional)}}.

	Returns

	Dict

	
class projectroles.plugins.ProjectAppPluginPoint

	Projectroles plugin point for registering project specific apps

	
get_extra_data_link(_extra_data, _name)

	Return a link for the given timeline label that stars with "extra:".

	
get_object(model, uuid)

	Return object based on the model class and the object’s SODAR UUID.

	Parameters

	
	model – Object model class

	uuid – sodar_uuid of the referred object

	Returns

	Model object or None if not found

	Raise

	NameError if model is not found

	
get_object_link(model_str, uuid)

	Return the URL for referring to a object used by the app, along with a
label to be shown to the user for linking.

	Parameters

	
	model_str – Object class (string)

	uuid – sodar_uuid of the referred object

	Returns

	Dict or None if not found

	
get_project_list_value(column_id, project)

	Return a value for the optional additional project list column specific
to a project.

	Parameters

	
	column_id – ID of the column (string)

	project – Project object

	Returns

	String (may contain HTML) or None

	
get_statistics()

	Return app statistics as a dict. Should take the form of
{id: {label, value, url (optional), description (optional)}}.

	Returns

	Dict

	
get_taskflow_sync_data()

	Return data for synchronizing taskflow operations.

	Returns

	List of dicts or None.

	
search(search_term, user, search_type=None, keywords=None)

	Return app items based on a search term, user, optional type and
optional keywords.

	Parameters

	
	search_term – String

	user – User object for user initiating the search

	search_type – String

	keywords – List (optional)

	Returns

	Dict

	
update_cache(name=None, project=None, user=None)

	Update cached data for this app, limitable to item ID and/or project.

	Parameters

	
	name – Item name to limit update to (string, optional)

	project – Project object to limit update to (optional)

	user – User object to denote user triggering the update (optional)

	
urls = []

	App URLs (will be included in settings by djangoplugins)

	
class projectroles.plugins.RemoteSiteAppPlugin

	Site plugin for remote site and project management

	
app_permission = 'userprofile.update_remote'

	Required permission for displaying the app

	
description = 'Management of remote SODAR sites and remote project access'

	Description string

	
entry_point_url_id = 'projectroles:remote_sites'

	Entry point URL ID

	
icon = 'cloud'

	FontAwesome icon ID string

	
name = 'remotesites'

	Name (slug-safe, used in URLs)

	
title = 'Remote Site Access'

	Title (used in templates)

	
urls = []

	App URLs (will be included in settings by djangoplugins)

	
class projectroles.plugins.SiteAppPluginPoint

	Projectroles plugin point for registering site-wide apps

	
get_messages(user=None)

	Return a list of messages to be shown to users.

	Parameters

	user – User object (optional)

	Returns

	List of dicts or and empty list if no messages

	
projectroles.plugins.change_plugin_status(name, status, plugin_type='app')

	Change the status of a selected plugin in the database.

	Parameters

	
	name – Plugin name (string)

	status – Status (int, see djangoplugins)

	plugin_type – Type of plugin (“app”, “backend” or “site”)

	Raise

	ValueError if plugin_type is invalid or plugin with name not found

	
projectroles.plugins.get_active_plugins(plugin_type='project_app')

	Return active plugins of a specific type.

	Parameters

	plugin_type – “project_app”, “site_app” or “backend” (string)

	Returns

	List or None

	Raise

	ValueError if plugin_type is not recognized

	
projectroles.plugins.get_app_plugin(plugin_name)

	Return active app plugin.

	Parameters

	plugin_name – Plugin name (string)

	Returns

	ProjectAppPlugin object or None if not found

	
projectroles.plugins.get_backend_api(plugin_name, force=False)

	Return backend API object.

	Parameters

	
	plugin_name – Plugin name (string)

	force – Return plugin regardless of status in ENABLED_BACKEND_PLUGINS

	Returns

	Plugin object or None if not found

Models

Projectroles models are used by other apps for project access and metadata
management as well as linking objects to projects.

	
class projectroles.models.AppSetting(*args, **kwargs)

	Project and users settings value.

The settings are defined in the “app_settings” member in a SODAR project
app’s plugin. The scope of each setting can be either “USER” or “PROJECT”,
defined for each setting in app_settings. Project AND user-specific settings
or settings which don’t belong to either are are currently not supported.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
app_plugin

	App to which the setting belongs

	
get_value()

	Return value of the setting in the format specified in ‘type’

	
name

	Name of the setting

	
project

	Project to which the setting belongs

	
save(*args, **kwargs)

	Version of save() to convert ‘value’ data according to ‘type’

	
sodar_uuid

	AppSetting SODAR UUID

	
type

	Type of the setting

	
user

	Project to which the setting belongs

	
user_modifiable

	Setting visibility in forms

	
value

	Value of the setting

	
value_json

	Optional JSON value for the setting

	
class projectroles.models.AppSettingManager

	Manager for custom table-level AppSetting queries

	
get_setting_value(app_name, setting_name, project=None, user=None)

	Return value of setting_name for app_name in project or for user.

Note that either project or user must be None but not both.

	Parameters

	
	app_name – App plugin name (string)

	setting_name – Name of setting (string)

	project – Project object or pk

	user – User object or pk

	Returns

	Value (string)

	Raise

	AppSetting.DoesNotExist if setting is not found

	
class projectroles.models.Project(*args, **kwargs)

	A SODAR project. Can have one parent category in case of nested
projects. The project must be of a specific type, of which “CATEGORY” and
“PROJECT” are currently implemented. “CATEGORY” projects are used as
containers for other projects

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
description

	Short project description

	
get_children()

	Return child objects for the Project sorted by title

	
get_delegates()

	Return RoleAssignments for delegates

	
get_depth()

	Return depth of project in the project tree structure (root=0)

	
get_full_title()

	Return full title of project (just an alias for __str__())

	
get_members()

	Return RoleAssignments for members of project excluding owner and
delegates

	
get_owner()

	Return RoleAssignment for owner or None if not set

	
get_parents()

	Return an array of parent projects in inheritance order

	
get_source_site()

	Return source site or None if this is a locally defined project

	
has_role(user, include_children=False)

	Return whether user has roles in Project. If include_children is
True, return True if user has roles in ANY child project

	
is_remote()

	Return True if current project has been retrieved from a remote
SODAR site

	
parent

	Parent category if nested, otherwise null

	
readme

	Project README (optional, supports markdown)

	
save(*args, **kwargs)

	Version of save() to include custom validation for Project

	
sodar_uuid

	Project SODAR UUID

	
submit_status

	Status of project creation

	
title

	Project title

	
type

	Type of project (“CATEGORY”, “PROJECT”)

	
class projectroles.models.ProjectInvite(*args, **kwargs)

	Invite which is sent to a non-logged in user, determining their role in
the project.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
active

	Status of the invite (False if claimed or revoked)

	
date_created

	DateTime of invite creation

	
date_expire

	Expiration of invite as DateTime

	
email

	Email address of the person to be invited

	
issuer

	User who issued the invite

	
message

	Message to be included in the invite email (optional)

	
project

	Project to which the person is invited

	
role

	Role assigned to the person

	
secret

	Secret token provided to user with the invite

	
sodar_uuid

	ProjectInvite SODAR UUID

	
class projectroles.models.ProjectManager

	Manager for custom table-level Project queries

	
find(search_term, keywords=None, project_type=None)

	Return projects with a partial match in full title or, including titles
of parent Project objects, or the description of the current object.
Restrict to project type if project_type is set.
:param search_term: Search term (string)
:param keywords: Optional search keywords as key/value pairs (dict)
:param project_type: Project type or None
:return: List of Project objects

	
class projectroles.models.ProjectUserTag(*args, **kwargs)

	Tag assigned by a user to a project

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
name

	Name of tag to be assigned

	
project

	Project to which the tag is assigned

	
sodar_uuid

	ProjectUserTag SODAR UUID

	
user

	User for whom the tag is assigned

	
class projectroles.models.RemoteProject(*args, **kwargs)

	Remote project relation

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
date_access

	DateTime of last access from/to remote site

	
get_project()

	Get the related Project object

	
level

	Project access level

	
project

	Related project object (if created locally)

	
project_uuid

	Related project UUID

	
site

	Related remote SODAR site

	
sodar_uuid

	RemoteProject relation UUID (local)

	
class projectroles.models.RemoteSite(*args, **kwargs)

	Remote SODAR site

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
description

	Site description

	
get_access_date()

	Return date of latest project access by remote site

	
get_url()

	Return sanitized site URL

	
mode

	Site mode

	
name

	Site name

	
save(*args, **kwargs)

	Version of save() to include custom validation

	
secret

	Secret token used to connect to the master site

	
sodar_uuid

	RemoteSite relation UUID (local)

	
url

	Site URL

	
class projectroles.models.Role(*args, **kwargs)

	Role definition, used to assign roles to projects in RoleAssignment

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
description

	Role description

	
name

	Name of role

	
class projectroles.models.RoleAssignment(*args, **kwargs)

	Assignment of an user to a role in a project. One role per user is
allowed for each project. Roles of project owner and project delegate
assignements might be limited (to PROJECTROLES_DELEGATE_LIMIT) per project.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
project

	Project in which role is assigned

	
role

	Role to be assigned

	
save(*args, **kwargs)

	Version of save() to include custom validation for RoleAssignment

	
sodar_uuid

	RoleAssignment SODAR UUID

	
user

	User for whom role is assigned

	
class projectroles.models.RoleAssignmentManager

	Manager for custom table-level RoleAssignment queries

	
get_assignment(user, project)

	Return assignment of user to project, or None if not found

	
class projectroles.models.SODARUser(*args, **kwargs)

	SODAR compatible abstract user model

	
get_full_name()

	Return full name or username if not set

	
sodar_uuid

	User SODAR UUID

	
projectroles.models.assign_user_group(sender, user, **kwargs)

	Signal for user group assignment

	
projectroles.models.handle_ldap_login(sender, user, **kwargs)

	Signal for LDAP login handling

App Settings

Projectroles provides an API for getting or setting project and user
specific settings.

	
class projectroles.app_settings.AppSettingAPI

	
	
classmethod get_all_defaults(scope)

	Get all default settings for a scope.

	Parameters

	scope –

	Returns

	

	
classmethod get_all_settings(project=None, user=None)

	Return all setting values. If the value is not found, return
the default.

	Parameters

	
	project – Project object (can be None)

	user – User object (can be None)

	Returns

	Dict

	Raise

	ValueError if neither project nor user are set

	
classmethod get_app_setting(app_name, setting_name, project=None, user=None)

	Return app setting value for a project or an user. If not set, return
default.

	Parameters

	
	app_name – App name (string, must correspond to “name” in app
plugin)

	setting_name – Setting name (string)

	project – Project object (can be None)

	user – User object (can be None)

	Returns

	String or None

	Raise

	KeyError if nothing is found with setting_name

	
classmethod get_default_setting(app_name, setting_name)

	Get default setting value from an app plugin.

	Parameters

	
	app_name – App name (string, must correspond to “name” in app
plugin)

	setting_name – Setting name (string)

	Returns

	Setting value (string, integer or boolean)

	Raise

	KeyError if nothing is found with setting_name

	
classmethod get_setting_defs(plugin, scope, user_modifiable=False)

	Return app setting definitions of a specific scope from a plugin.

	Parameters

	
	plugin – project app plugin object extending ProjectAppPluginPoint

	scope – PROJECT or USER

	user_modifiable – Only return modifiable settings if True
(boolean)

	Returns

	Dict

	Raise

	ValueError if scope is invalid

	
classmethod set_app_setting(app_name, setting_name, value, project=None, user=None, validate=True)

	Set value of an existing project or user settings. Creates the object if
not found.

	Parameters

	
	app_name – App name (string, must correspond to “name” in app
plugin)

	setting_name – Setting name (string)

	value – Value to be set

	project – Project object (can be None)

	user – User object (can be None)

	validate – Validate value (bool, default=True)

	Returns

	True if changed, False if not changed

	Raise

	ValueError if validating and value is not accepted for setting
type

	Raise

	ValueError if neither project nor user are set

	Raise

	KeyError if setting name is not found in plugin specification

	
classmethod validate_setting(setting_type, setting_value)

	Validate setting value according to its type.

	Parameters

	
	setting_type – Setting type

	setting_value – Setting value

	Raise

	ValueError if setting_type or setting_value is invalid

Common Template Tags

These tags can be included in templates with
{% load 'projectroles_common_tags' %}.

Template tags provided by projectroles for use in other apps

	
projectroles.templatetags.projectroles_common_tags.check_backend(name)

	Return True if backend app is available, else False

	
projectroles.templatetags.projectroles_common_tags.core_version()

	Return the SODAR Core version

	
projectroles.templatetags.projectroles_common_tags.force_wrap(s, length)

	Force wrapping of string

	
projectroles.templatetags.projectroles_common_tags.get_app_setting(app_name, setting_name, project=None, user=None)

	Get a project/user specific app setting from AppSettingAPI

	
projectroles.templatetags.projectroles_common_tags.get_class(obj, lower=False)

	Return object class as string

	
projectroles.templatetags.projectroles_common_tags.get_display_name(key, title=False, count=1, plural=False)

	Return display name from SODAR_CONSTANTS

	
projectroles.templatetags.projectroles_common_tags.get_django_setting(name, js=False)

	Return value of Django setting by name or None if it is not found.
Return a Javascript-safe value if js=True.

	
projectroles.templatetags.projectroles_common_tags.get_full_url(request, url)

	Get full URL based on a local URL

	
projectroles.templatetags.projectroles_common_tags.get_history_dropdown(project, obj)

	Return link to object timeline events within project

	
projectroles.templatetags.projectroles_common_tags.get_info_link(content, html=False)

	Return info popover link icon

	
projectroles.templatetags.projectroles_common_tags.get_project_by_uuid(sodar_uuid)

	Return Project by sodar_uuid

	
projectroles.templatetags.projectroles_common_tags.get_project_link(project, full_title=False, request=None)

	Return link to project with a simple or full title

	
projectroles.templatetags.projectroles_common_tags.get_project_title_html(project)

	Return HTML version of the full project title including parents

	
projectroles.templatetags.projectroles_common_tags.get_remote_icon(project, request)

	Get remote project icon HTML

	
projectroles.templatetags.projectroles_common_tags.get_setting(name, js=False)

	Return value of Django setting by name or None if it is not found.
Return a Javascript-safe value if js=True.

	
projectroles.templatetags.projectroles_common_tags.get_user_by_username(username)

	Return User by username

	
projectroles.templatetags.projectroles_common_tags.get_user_html(user)

	Return standard HTML representation for a User object

	
projectroles.templatetags.projectroles_common_tags.highlight_search_term(item, term)

	Return string with search term highlighted

	
projectroles.templatetags.projectroles_common_tags.render_markdown(raw_markdown)

	Markdown field rendering helper

	
projectroles.templatetags.projectroles_common_tags.site_version()

	Return the site version

	
projectroles.templatetags.projectroles_common_tags.static_file_exists(path)

	Return True/False based on whether a static file exists

	
projectroles.templatetags.projectroles_common_tags.template_exists(path)

	Return True/False based on whether a template exists

Utilities

General utility functions are stored in utils.py.

	
projectroles.utils.build_invite_url(invite, request)

	Return invite URL for a project invitation.

	Parameters

	
	invite – ProjectInvite object

	request – HTTP request

	Returns

	URL (string)

	
projectroles.utils.build_secret(length=32)

	Return secret string for e.g. public URLs.

	Parameters

	length – Length of string if specified, default value from settings

	Returns

	Randomized secret (string)

	
projectroles.utils.get_app_names()

	Return list of names for locally installed non-django apps

	
projectroles.utils.get_display_name(key, title=False, count=1, plural=False)

	Return display name from SODAR_CONSTANTS.

	Parameters

	
	key – Key in SODAR_CONSTANTS[‘DISPLAY_NAMES’] to return (string)

	title – Return name in title case if true (boolean, optional)

	count – Item count for returning plural form, overrides plural=False
if not 1 (int, optional)

	plural – Return plural form if True, overrides count != 1 if True
(boolean, optional)

	Returns

	String

	
projectroles.utils.get_expiry_date()

	Return expiry date based on current date + INVITE_EXPIRY_DAYS

	Returns

	DateTime object

	
projectroles.utils.get_user_display_name(user, inc_user=False)

	Return full name of user for displaying.

	Parameters

	
	user – User object

	inc_user – Include user name if true (boolean)

	Returns

	String

	
projectroles.utils.set_user_group(user)

	Set user group based on user name.

Adminalerts App

The adminalerts site app enables system administrators to display site-wide
messages to all users with an expiration date.

Basics

The app displays un-dismissable small alerts on the top of page content to all
users. They can be used to e.g. warn users of upcoming downtime or highlight
recently deployed changes.

Upon creation, an expiration date is set for each alert. Alerts can also be
freely enabled, disabled or deleted by superuser on the app UI. Additional
information regarding an alert can be provided with Markdown syntax and viewed
on a separate details page.

Installation

Warning

To install this app you must have the django-sodar-core package
installed and the projectroles app integrated into your Django site.
See the projectroles integration document
for instructions.

Django Settings

The adminalerts app is available for your Django site after installing
django-sodar-core. Add the app into THIRD_PARTY_APPS as follows:

THIRD_PARTY_APPS = [
 # ...
 'adminalerts.apps.AdminalertsConfig',
]

Optional Settings

To alter default adminalerts app settings, insert the following optional
variables with values of your choosing:

Adminalerts app settings
ADMINALERTS_PAGINATION = 15 # Number of alerts to be shown on one page (int)

URL Configuration

In the Django URL configuration file, add the following line under
urlpatterns to include adminalerts URLs in your site.

urlpatterns = [
 # ...
 url(r'^alerts/', include('adminalerts.urls')),
]

Migrate Database and Register Plugin

To migrate the Django database and register the adminalerts site app plugin,
run the following management command:

$./manage.py migrate

In addition to the database migration operation, you should see the following
output:

Registering Plugin for admimnalert.plugins.SiteAppPlugin

Usage

When logged in as a superuser, you can find the “Alerts” option in your user
dropdown menu in the top right corner of the site. Using the UI, you can add,
modify and delete alerts shown to users.

This application is not available for users with a non-superuser status.

Bgjobs App

The bgjobs app allows for the management of project-specific and
asynchronous server-side background jobs.

TODO: Docs to be filled out

Contents:

	Installation
	Django Settings

	URL Configuration

	Migrate Database and Register Plugin

	Celery Setup

	Usage

Bgjobs Installation

This document provides instructions and guidelines for installing the
bgjobs app to be used with your SODAR Core enabled Django site.

Warning

To install this app you must have the django-sodar-core package
installed and the projectroles app integrated into your Django site.
See the projectroles integration document
for instructions.

Django Settings

The bgjobs app is available for your Django site after installing
django-sodar-core. Add the app into THIRD_PARTY_APPS as
follows:

THIRD_PARTY_APPS = [
 # ...
 'bgjobs.apps.BgjobsConfig',
]

URL Configuration

In the Django URL configuration file, add the following line under
urlpatterns to include bgjobs URLs in your site.

urlpatterns = [
 # ...
 url(r'^bgjobs/', include('bgjobs.urls')),
]

Migrate Database and Register Plugin

To migrate the Django database and register the bgjobs app and job type plugins,
run the following management command:

$./manage.py migrate

In addition to the database migration operation, you should see the following
output:

Registering Plugin for bgjobs.plugins.ProjectAppPlugin
Registering Plugin for bgjobs.plugins.BackgroundJobsPluginPoint

Celery Setup

TODO

Bgjobs Usage

Usage instructions for the bgjobs app are detailed in this document.

TODO

Filesfolders App

The filesfolders app enables uploading small files into the Django database
and organizing them in folders. It also permits creating hyperlinks, providing
public links to files and automated unpacking of ZIP archives.

The app is displayed as “Small Files” on the SODAR site.

Contents:

	Installation
	Django Settings

	URL Configuration

	Migrate Database and Register Plugin

	Usage
	Filesfolders UI

	App Settings

Filesfolders Installation

This document provides instructions and guidelines for installing the
filesfolders app to be used with your SODAR Core enabled Django site.

Warning

To install this app you must have the django-sodar-core package
installed and the projectroles app integrated into your Django site.
See the projectroles integration document
for instructions.

Django Settings

The filesfolders app is available for your Django site after installing
django-sodar-core. Add the app, along with the prerequisite
django_db_storage app into THIRD_PARTY_APPS as follows:

THIRD_PARTY_APPS = [
 # ...
 'filesfolders.apps.FilesfoldersConfig',
 'db_file_storage',
]

Next set the db_file_storage app as the default storage app for your site:

DEFAULT_FILE_STORAGE = 'db_file_storage.storage.DatabaseFileStorage'

Fill out filesfolders app settings to fit your site. The settings variables are
explained below:

	FILESFOLDERS_MAX_UPLOAD_SIZE: Max size for an uploaded file in bytes (int)

	FILESFOLDERS_MAX_ARCHIVE_SIZE: Max size for an archive file to be unpacked
in bytes (int)

	FILESFOLDERS_SERVE_AS_ATTACHMENT: If true, always serve downloaded files
as attachment instead of opening them in browser (bool)

	FILESFOLDERS_LINK_BAD_REQUEST_MSG: Message to be displayed for a bad
public link request (string)

Example of default values:

Filesfolders app settings
FILESFOLDERS_MAX_UPLOAD_SIZE = env.int(
 'FILESFOLDERS_MAX_UPLOAD_SIZE', 10485760)
FILESFOLDERS_MAX_ARCHIVE_SIZE = env.int(
 'FILESFOLDERS_MAX_ARCHIVE_SIZE', 52428800)
FILESFOLDERS_SERVE_AS_ATTACHMENT = False
FILESFOLDERS_LINK_BAD_REQUEST_MSG = 'Invalid request'

URL Configuration

In the Django URL configuration file, add the following lines under
urlpatterns to include filesfolders URLs in your site. The latter line is
required by db_file_storage and should be obfuscated from actual users.

urlpatterns = [
 # ...
 url(r'^files/', include('filesfolders.urls')),
 url(r'^OBFUSCATED_STRING_HERE/', include('db_file_storage.urls')),
]

Migrate Database and Register Plugin

To migrate the Django database and register the filesfolders app plugin, run the
following management command:

$./manage.py migrate

In addition to the database migration operation, you should see the following
output:

Registering Plugin for filesfolders.plugins.ProjectAppPlugin

Filesfolders Usage

Usage instructions for the filesfolders app are detailed in this document.

Filesfolders UI

You can browse and manage files in the app’s main view according to your
permissions for each project. The “File Operations” menu is used to upload new
files as well as add new folders or links. The menu also contains batch moving
and deletion operations, for which items can be checked using the right hand
side checkboxes.

Updating/deleting operations for single items can be accessed in the dropdown
menus for each item. In the item create/update form, you can also tag items
with a choice of icons and stylings to represent the item status.

When uploading a .zip archive, you may choose the “Extract files from archive”
option to automatically extract archive files and folders into the filesfolders
app. Note that overwriting of files is not currently allowed.

[image: _images/sodar_filesfolders.png]
Filesfolders main view

App Settings

In the project create/update form, set the boolean setting
filesfolders.allow_public_links true to allow providing public links to
files, for people who can access the site but do not necessarily have a user
account or project rights. Note that public link access still has to be granted
for each file through its create/update form.

Userprofile App

The userprofile app is a site app which provides a user profile
view for projectroles-compatible Django users and management of user specific
settings.

Installation

It is strongly recommended to install the userprofile app into your site
when using projectroles, unless you require a specific user profile providing
app of your own.

Warning

To install this app you must have the django-sodar-core package
installed and the projectroles app integrated into your Django site.
See the projectroles integration document
for instructions.

Django Settings

The userprofile app is available for your Django site after installing
django-sodar-core. Add the app into THIRD_PARTY_APPS as
follows:

THIRD_PARTY_APPS = [
 # ...
 'userprofile.apps.UserprofileConfig',
]

URL Configuration

In the Django URL configuration file, add the following line under
urlpatterns to include userprofile URLs in your site.

urlpatterns = [
 # ...
 url(r'^user/', include('userprofile.urls')),
]

Register Plugin

To register the app plugin, run the following management command:

$./manage.py syncplugins

You should see the following output:

Registering Plugin for userprofile.plugins.ProjectAppPlugin

Usage

After successful installation, the link for “User Profile” should be available
in the user dropdown menu in the top-right corner of the website UI after you
have logged in.

User Settings

User settings are configured in the app_settings dictionary in your project
app plugins.

Siteinfo App

The siteinfo site app enables system administrators and developers to view
site details and statistics gathered from project and backend apps.

Basics

The app renders a site which displays information and statistics regarding the
site and installed SODAR apps. Providing app statistics for siteinfo done via
implementing the get_statistics() function in your app plugins. Currently,
access to the app is limited to site administrators.

Installation

Warning

To install this app you must have the django-sodar-core package
installed and the projectroles app integrated into your Django site.
See the projectroles integration document
for instructions.

Django Settings

The siteinfo app is available for your Django site after installing
django-sodar-core. Add the app into THIRD_PARTY_APPS as follows:

THIRD_PARTY_APPS = [
 # ...
 'siteinfo.apps.SiteinfoConfig',
]

URL Configuration

In the Django URL configuration file, add the following line under
urlpatterns to include siteinfo URLs in your site.

urlpatterns = [
 # ...
 url(r'^siteinfo/', include('siteinfo.urls')),
]

Migrate Database and Register Plugin

To migrate the Django database and register the siteinfo site app plugin,
run the following management command:

$./manage.py migrate

In addition to the database migration operation, you should see the following
output:

Registering Plugin for siteinfo.plugins.SiteAppPlugin

Usage

When logged in as a superuser, you can find the “Site Info” link in your user
dropdown menu in the top right corner of the site.

This application is not available for users with a non-superuser status.

Providing App Statistics

In your project app or backend plugin, implement the get_statistics()
function. It should return a dictionary containing, for each statistics item,
a program friendly key and certain member fields:

	label: Human readable label for the statistics item.

	value: The value to be rendered

	url: The url to link to from the value for additional information (optional)

	description: Additional information (optional)

Example:

def get_statistics(self):
 return {
 'stat_id': {
 'label': 'Some statistic',
 'value': 9000,
 'url': reverse('home'),
 'description': 'More information here'
 }
 }

Sodarcache App

The sodarcache app provides a generic data caching functionality for
a SODAR Core based site. This can be used to e.g. locally cache and aggregate
data referring to external sources in order to speed up commonly repeated
queries to databases other than the local Django PostgreSQL.

Contents:

	Installation
	Django Settings

	URL Configuration

	Migrate Database and Register Plugin

	Usage
	Backend API for Data Caching
	Invoking the API

	Setting and getting Cache Items

	Using the Management commands

	API
	Backend API

	Models

Sodarcache Installation

This document provides instructions and guidelines for installing the
sodarcache app to be used with your SODAR Core enabled Django site.

Warning

To install this app you must have the django-sodar-core package
installed and the projectroles app integrated into your Django site.
See the projectroles integration document
for instructions.

Django Settings

The sodarcache app is available for your Django site after installing
django-sodar-core. Add the app into THIRD_PARTY_APPS as follows:

THIRD_PARTY_APPS = [
 # ...
 'sodarcache.apps.SodarCacheConfig',
]

You also need to add the sodarcache backend plugin in enabled backend
plugins.

ENABLED_BACKEND_PLUGINS = [
 # ...
 'sodar_cache',
]

URL Configuration

In the Django URL configuration file, add the following lines under
urlpatterns to include sodarcache URLs in your site.

urlpatterns = [
 # ...
 url(r'^cache/', include('sodarcache.urls')),
]

Migrate Database and Register Plugin

To migrate the Django database and register the sodarcache app plugin, run the
following management command:

$./manage.py migrate

In addition to the database migration operation, you should see the following
output:

Registering Plugin for sodarcache.plugins.BackendPlugin

Sodar Cache Usage

Usage instructions for the sodarcache app are detailed in this document.

Backend API for Data Caching

The API for logging events is located in sodarcache.api. For the full API
documentation, see here.

Invoking the API

The API is accessed through a backend plugin. This means you can write calls to
the API without any hard-coded imports and your code should work even if the
sodarcache app has not been installed on the site.

Initialize the API using projectroles.plugins.get_backend_api() as follows:

from projectroles.plugins import get_backend_api
projectcache = get_backend_api('sodar_cache')

if projectcache: # Only proceed if the backend was successfully initialized
 pass

Setting and getting Cache Items

Once you can access the sodarcache backend, you should set up the
update_cache() function in the ProjectAppPlugin of the app with which
you want to cache or aggregate data. The update process can be limited by two
parameters: cached item name and project. If neither are specified, the function
should update cached data for all known items within all projects.

def update_cache(self, name=None, project=None):
"""
Update cached data for this app, limitable to item ID and/or project.

:param project: Project object to limit update to (optional)
:param name: Item name to limit update to (string, optional)
"""
TODO: Implement this in your app plugin
return None

Updating a specific cache item within the update_cache() function (or
elsewhere) should be done using sodarcache.api.set_cache_item(). A minimal
example is as follows:

cache_item = projectcache.set_cache_item(
 project=project, # Project object
 app_name=APP_NAME, # Name of the current app
 user=request.user, # The user triggering the cache update
 name='some_item', # Cached item ID
 data_type='json', # Data type ("json" currently supported)
 data={'key': 'val'}, # The actual data that should be cached
)

Note

The item ID in the name argument is not unique, but it is expected to
be unique together with the project and app_name arguments.

Retrieve items with sodarcache.get_cache_item() or just check the
time the item was last updated with sodarcache.get_update_time() like
this:

projectcache.get_cache_item(
 app_name='yourapp',
 name='some_item',
 project=project,
 data_type='json'
) # Returns a JsonCacheItem

projectcache.get_update_time(
 app_name='yourapp',
 name='some_item',
 project=project
)

It is also possible to retrieve a Queryset with all cached items for a specific
project with sodarcache.get_project_cache()

projectcache.get_project_cache(
 project=project, # Project object
 data_type='json' # must be 'json' for JsonCacheItem
)

Using the Management commands

To create or update the data cache for all apps and projects, you can use a
management command.

$./manage.py synccache

To limit the sync to a specific project, you can provide the -p or
--project argument with the project UUID.

$./manage.py synccache -p e9701604-4ccc-426c-a67c-864c15aff6e2

Similarly, there is a command to delete all cached data:

$./manage.py deletecache

Sodarcache Backend API Documentation

This document contains API documentation for the backend plugin in the
sodarcache app. Included are functionalities and classes intended to be used
by other applications.

Backend API

The SodarCacheAPI class contains the Sodar Cache backend API. It should be
initialized with Projectroles.plugins.get_backend_api('sodar_cache').

	
class sodarcache.api.SodarCacheAPI

	SodarCache backend API to be used by Django apps.

	
classmethod delete_cache(app_name=None, project=None)

	Delete cache items. Optionallly limit to project and/or user.

	Parameters

	
	app_name – Name of the app which sets the item (string)

	project – Project object (optional)

	Returns

	Integer (deleted item count)

	Raise

	ValueError if app_name is given but invalid

	
classmethod get_cache_item(app_name, name, project=None)

	Return cached data by app_name, name (identifier) and optional project.
Returns None if not found.

	Parameters

	
	name – Item name (string)

	app_name – Name of the app which sets the item (string)

	project – Project object (optional)

	Returns

	JSONCacheItem object

	Raise

	ValueError if app_name is invalid

	
classmethod get_project_cache(project, data_type='json')

	Return all cached data for a project.

	Parameters

	
	project – Project object

	data_type – String stating the data type of the cache items

	Returns

	QuerySet

	Raise

	ValueError if data_type is invalid

	
classmethod get_update_time(app_name, name, project=None)

	Return the time of the last update of a cache object as seconds since
epoch.

	Parameters

	
	name – Item name (string)

	app_name – Name of the app which sets the item (string)

	project – Project object (optional)

	Returns

	Float

	
classmethod set_cache_item(app_name, name, data, data_type='json', project=None, user=None)

	Create or update and save a cache item.

	Parameters

	
	app_name – Name of the app which sets the item (string)

	name – Item name (string)

	data – Item data (dict)

	data_type – String stating the data type of the cache items

	project – Project object (optional)

	user – User object to denote user triggering the update (optional)

	Returns

	JSONCacheItem object

	Raise

	ValueError if app_name is invalid

	Raise

	ValueError if data_type is invalid

	
classmethod update_cache(name=None, project=None, user=None)

	Update items by certain name within a project by calling implemented
functions in project app plugins.

	Parameters

	
	name – Item name to limit update to (string, optional)

	project – Project object to limit update to (optional)

	user – User object to denote user triggering the update (optional)

Models

	
class sodarcache.models.BaseCacheItem(*args, **kwargs)

	Abstract class representing a cached item

	
app_name

	App name

	
date_modified

	DateTime of the update

	
name

	Identifier for the item given by the data setting app

	
project

	Project in which the item belongs (optional)

	
sodar_uuid

	UUID for the item

	
user

	User who updated the item (optional)

	
class sodarcache.models.JSONCacheItem(*args, **kwargs)

	Class representing a cached item in JSON format

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
data

	Cached data as JSON

Taskflow Backend

The taskflowbackend backend app is an optional add-on used if your site
setup contains the separate SODAR Taskflow data transaction service.

If you have not set up a SODAR Taskflow service for any purpose, this backend
is not needed and can be ignored.

Basics

The taskflowbackend backend app is used in the main SODAR site to
communicate with an external SODAR Taskflow service to manage large-scale data
transactions. It has no views or database models and only provides an API for
other apps to use.

Note

At the time of writing, SODAR Taskflow is in development and has not been
made public.

Installation

Warning

To install this app you must have the django-sodar-core package
installed and the projectroles app integrated into your Django site.
See the projectroles integration document
for instructions.

Django Settings

The taskflowbackend app is available for your Django site after installing
django-sodar-core. Add the app into THIRD_PARTY_APPS as follows:

THIRD_PARTY_APPS = [
 # ...
 'taskflowbackend.apps.TaskflowbackendConfig',
]

Next add the backend to the list of enabled backend plugins:

ENABLED_BACKEND_PLUGINS = env.list('ENABLED_BACKEND_PLUGINS', None, [
 # ...
 'taskflow',
])

The following app settings must be included in order to use the backend.
Note that the values for TASKFLOW_TARGETS depend on your SODAR Taskflow
configuration.

Taskflow backend settings
TASKFLOW_BACKEND_HOST = env.str('TASKFLOW_BACKEND_HOST', 'http://0.0.0.0')
TASKFLOW_BACKEND_PORT = env.int('TASKFLOW_BACKEND_PORT', 5005)
TASKFLOW_SODAR_SECRET = env.str('TASKFLOW_SODAR_SECRET', 'CHANGE ME!')
TASKFLOW_TARGETS = [
 'sodar',
 # ..
]

Register Plugin

To register the taskflowbackend plugin, run the following management command:

$./manage.py syncplugins

You should see the following output:

Registering Plugin for taskflowbackend.plugins.BackendPlugin

Usage

Once enabled, Retrieve the backend API class with the following in your Django
app python code:

from projectroles.plugins import get_backend_api
taskflow = get_backend_api('taskflow')

See the docstrings of the API for more details.

To initiate sync of existing data with your SODAR Taskflow service, you can use
the following management command:

./manage.py synctaskflow

API Documentation

The TaskflowAPI class contains the SODAR Taskflow backend API. It should be
initialized using the Projectroles.plugins.get_backend_api() function.

	
class taskflowbackend.api.TaskflowAPI

	SODAR Taskflow API to be used by Django apps

	
exception CleanupException

	SODAR Taskflow cleanup exception

	
exception FlowSubmitException

	SODAR Taskflow submission exception

	
cleanup()

	Send a cleanup command to SODAR Taskflow. Only allowed in test mode.

	Returns

	Boolean

	Raise

	ImproperlyConfigured if TASKFLOW_TEST_MODE is not set True

	Raise

	CleanupException if SODAR Taskflow raises an error

	
get_error_msg(flow_name, submit_info)

	Return a printable version of a SODAR Taskflow error message.

	Parameters

	
	flow_name – Name of submitted flow

	submit_info – Returned information from SODAR Taskflow

	Returns

	String

	
submit(project_uuid, flow_name, flow_data, request=None, targets=['sodar'], request_mode='sync', timeline_uuid=None, force_fail=False, sodar_url=None)

	Submit taskflow for SODAR project data modification.

	Parameters

	
	project_uuid – UUID of the project (UUID object or string)

	flow_name – Name of flow to be executed (string)

	flow_data – Input data for flow execution (dict)

	request – Request object (optional)

	targets – Names of backends to sync with (list)

	request_mode – “sync” or “async”

	timeline_uuid – UUID of corresponding timeline event (optional)

	force_fail – Make flow fail on purpose (boolean, default False)

	sodar_url – URL of SODAR server (optional, for testing)

	Returns

	Boolean

	Raise

	FlowSubmitException if submission fails

	
use_taskflow(project)

	Check whether taskflow use is allowed with a project.

	Parameters

	project – Project object

	Returns

	Boolean

Timeline App

The timeline app enables the developer of a SODAR Core based site to log
project related user events and link objects (both existing and deleted) to
those events.

Unlike the standard Django object history accessible in the admin
site, these events are not restricted to creation/modification of objects in the
Django database, but can concern any user-triggered activity.

The events can also have multiple temporal status states in case of e.g. events
requiring async requests.

The app provides front-end views to list project timeline events, as well as a
backend API for saving desired activity as timeline events. For details on how
to use these, see the timeline usage documentation.

Contents:

	Installation
	Django Settings

	Optional Settings

	URL Configuration

	Migrate Database and Register Plugin

	Usage
	Timeline UI

	Backend API for Event Logging
	Invoking the API

	Adding an Event

	Linking an Object

	Defining Object References

	Displaying Object Links

	Defining Status States

	Extra Data

	Classified Events

	API Documentation
	Backend API

	Models

Timeline Installation

This document provides instructions and guidelines for installing the
timeline app to be used with your SODAR Core enabled Django site.

Warning

To install this app you must have the django-sodar-core package
installed and the projectroles app integrated into your Django site.
See the projectroles integration document
for instructions.

Django Settings

The timeline app is available for your Django site after installing
django-sodar-core. Add the app into THIRD_PARTY_APPS as
follows:

THIRD_PARTY_APPS = [
 # ...
 'timeline.apps.TimelineConfig',
]

You also need to add the timeline backend plugin in enabled backend plugins.

ENABLED_BACKEND_PLUGINS = [
 # ...
 'timeline_backend',
]

Optional Settings

To alter default timeline app settings, insert the following optional
variables with values of your choosing:

Timeline app settings
TIMELINE_PAGINATION = 15 # Number of events to be shown on one page (int)

URL Configuration

In the Django URL configuration file, add the following line under
urlpatterns to include timeline URLs in your site.

urlpatterns = [
 # ...
 url(r'^timeline/', include('timeline.urls')),
]

Migrate Database and Register Plugin

To migrate the Django database and register the timeline app/backend plugins,
run the following management command:

$./manage.py migrate

In addition to the database migration operation, you should see the following
output:

Registering Plugin for timeline.plugins.ProjectAppPlugin
Registering Plugin for timeline.plugins.BackendPlugin

Timeline Usage

Usage instructions for the timeline app are detailed in this document.

Timeline UI

You can browse events logged for each project by navigating to the project and
selecting the “Timeline” app from the project sidebar.

By clicking on the time stamp for each event, you can see details of the event
execution (in case of e.g. asynchronous events).

By clicking on the clock icon next to an object link in the event description,
you can view the event history of that object. The link itself will take you
to the relevant view for the object on your Django site.

Admin users are able to see certain “classified” level events hidden from
normal users.

[image: _images/sodar_timeline.png]
Timeline event list view

Backend API for Event Logging

The API for logging events is located in timeline.api. For the full API
documentation, see here.

Invoking the API

The API is accessed through a backend plugin. This means you can write calls to
the API without any hard-coded imports and your code should work even if the
timeline app has not been installed on the site.

The most common use case is to save events within the Class-Based Views of your
Django site, but technically this can be done by any part of the code in your
Django apps.

Initialize the API using projectroles.plugins.get_backend_api() as follows:

from projectroles.plugins import get_backend_api
timeline = get_backend_api('timeline_backend')

if timeline: # Only proceed if the backend was successfully initialized
 pass # Save your events here..

Adding an Event

Once you can access the timeline backend, add the event with
timeline.add_event(). A minimal example is as follows:

tl_event = timeline.add_event(
 project=project, # Project object
 app_name=APP_NAME, # Name of the current app
 user=request.user, # The user triggering the activity being saved
 event_name='some_event', # You can define these yourself, not unique
 description='Description') # Human readable description

Linking an Object

Say you want to link a Django model object to the event for tracking its
history? In this example, let’s say it’s a SODAR Core compatible User model
object user_obj.

Note

The given object must contain an sodar_uuid field with an
auto-generated UUID. For more information, see the
project app development document.

Create the event as in the previous section, but add a label target_user in
the description. The name of the label is arbitrary:

tl_event = timeline.add_event(
 project=project,
 app_name=APP_NAME,
 user=request.user,
 event_name='some_event',
 description='Do something to {target_user}')

All you have to do is add an object reference to the created event:

obj_ref = tl_event.add_object(
 obj=user_obj,
 label='target_user',
 name=user_obj.username)

The name field specifies which name the object will be referred to when
displaying the event description to a user.

Defining Object References

The example before is all fine and good for a User object, but what about
your own custom Django model?

When encountering an unknown object model from your app, timeline will call the
get_object_link() function in the ProjectAppPlugin defined for your app.
Make sure to implement it for all the relevant models in your app.

Displaying Object Links

In order to display object links with timeline history link included, you can
use the timeline.api.get_object_link() function in your app’s template tags.

Defining Status States

Note

If your Django apps only deal with normal synchronous requests, you don’t
need to pay attention to this functionality right now.

By default, timeline.add_event() treats events as synchronous and
automatically saves them with the status of OK. However, in case of e.g.
asynchronous requests, you can alter this by setting the status_type and
(optionally) status_desc types upon creation.

tl_event = timeline.add_event(
 project=project,
 app_name=APP_NAME,
 user=request.user,
 event_name='some_event',
 description='Description',
 status_type='SUBMIT',
 status_desc='Just submitted this')

After that, you can add new status states for the event using the object
returned by timeline.add_event():

tl_event.set_status('OK', 'Submission was successful!')

Currently supported status types are listed below, some only applicable to async
events:

	OK: All OK, event successfully performed

	INFO: Used for events which do not change anything, e.g. viewing something
within an app

	INIT: Initializing the event in progress

	SUBMIT: Event submitted asynchronously

	FAILED: Asynchronous event submission failed

	CANCEL: Event cancelled

Extra Data

Extra data can be added in the JSON format for both events and their status
states with the extra_data and status_extra_data parameters.

Speciying a label {extra-NAME} in the event description will lead to a
callback to get_extra_data_link() in the app plugin. To support this you
need to make sure to implement the get_extra_data_link() function in your
plugin.

Classified Events

To mark an event “classified”, that is, restricting its visibility to project
owners and admins, set the classified argument to true when invoking
timeline.add_event().

Note

Multiple levels of classification may be introduced to the timeline event
model in the future.

Timeline API Documentation

This document contains API documentation for the timeline app. Included
are functionalities and classes intended to be used by other applications.

Backend API

The TimelineAPI class contains the Timeline backend API. It should be
initialized using the Projectroles.plugins.get_backend_api() function.

	
class timeline.api.TimelineAPI

	Timeline backend API to be used by Django apps.

	
static add_event(project, app_name, user, event_name, description, classified=False, extra_data=None, status_type=None, status_desc=None, status_extra_data=None)

	Create and save a timeline event.

	Parameters

	
	project – Project object

	app_name – ID string of app from which event was invoked (NOTE:
should correspond to member “name” in app plugin!)

	user – User invoking the event

	event_name – Event ID string (must match schema)

	description – Description of status change (may include {object
label} references)

	classified – Whether event is classified (boolean, optional)

	extra_data – Additional event data (dict, optional)

	status_type – Initial status type (string, optional)

	status_desc – Initial status description (string, optional)

	status_extra_data – Extra data for initial status (dict, optional)

	Returns

	ProjectEvent object

	Raise

	ValueError if app_name or status_type is invalid

	
static get_event_description(event, request=None)

	Return the description of a timeline event as HTML.

	Parameters

	
	event – ProjectEvent object

	request – Request object (optional)

	Returns

	String (contains HTML)

	
static get_object_link(project_uuid, obj)

	Return an inline HTML icon link for a timeline event object history.

	Parameters

	
	project_uuid – UUID of the related project

	obj – Django database object

	Returns

	String (contains HTML)

	
static get_object_url(project_uuid, obj)

	Return the URL for a timeline event object history.

	Parameters

	
	project_uuid – UUID of the related project

	obj – Django database object

	Returns

	String

	
static get_project_events(project, classified=False)

	Return timeline events for a project.

	Parameters

	
	project – Project object

	classified – Include classified (boolean)

	Returns

	QuerySet

Models

	
class timeline.models.ProjectEvent(*args, **kwargs)

	Class representing a Project event

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
add_object(obj, label, name, extra_data=None)

	Add object reference to an event.

	Parameters

	
	obj – Django object to which we want to refer

	label – Label for the object in the event description (string)

	name – Name or title of the object (string)

	extra_data – Additional data related to object (dict, optional)

	Returns

	ProjectEventObjectRef object

	
app

	App from which the event was triggered

	
classified

	Event is classified (only viewable by user levels specified in rules)

	
description

	Description of status change (may include {object_name} references)

	
event_name

	Event ID string

	
extra_data

	Additional event data as JSON

	
get_current_status()

	Return the current event status

	
get_status_changes(reverse=False)

	Return all status changes for the event

	
get_timestamp()

	Return the timestamp of current status

	
project

	Project in which the event belongs

	
set_status(status_type, status_desc=None, extra_data=None)

	Set event status.

	Parameters

	
	status_type – Status type string (see EVENT_STATUS_TYPES)

	status_desc – Description string (optional)

	extra_data – Extra data for the status (dict, optional)

	Returns

	ProjectEventStatus object

	Raise

	TypeError if status_type is invalid

	
sodar_uuid

	UUID for the event

	
user

	User who initiated the event

	
class timeline.models.ProjectEventManager

	Manager for custom table-level ProjectEvent queries

	
get_object_events(project, object_model, object_uuid, order_by='-pk')

	Return events which are linked to an object reference.

	Parameters

	
	project – Project object

	object_model – Object model (string)

	object_uuid – sodar_uuid of the original object

	order_by – Ordering (default = pk descending)

	Returns

	QuerySet

	
class timeline.models.ProjectEventObjectRef(*args, **kwargs)

	Class representing a reference to an object (existing or removed)
related to a Timeline event status

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
event

	Event to which the object belongs

	
extra_data

	Additional data related to the object as JSON

	
label

	Label for the object related to the event

	
name

	Name or title of the object

	
object_model

	Object model as string

	
object_uuid

	Object SODAR UUID

	
class timeline.models.ProjectEventStatus(*args, **kwargs)

	Class representing a Timeline event status

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
description

	Description of status change (optional)

	
event

	Event to which the status change belongs

	
extra_data

	Additional status data as JSON

	
status_type

	Type of the status change

	
timestamp

	DateTime of the status change

Development

This document presents instructions and guidelines for developing apps
compatible with the SODAR Core framework, as well as development of the SODAR
Core package itself.

Contents:

	General Guidelines

	Project Apps
	Project App Basics

	Prerequisites

	Models

	Rules File

	ProjectAppPlugin

	Views

	Templates

	General Guidelines for Views and Templates

	Forms

	Specific Views and Templates

	Project Search Function and Template

	Tour Help

	API Views

	TODO

	Site Apps
	Site App Basics

	Prerequisites

	Models

	Rules File

	SiteAppPlugin

	Views

	Templates

	Site App Messages

	Backend Apps
	Backend App Basics

	Prerequisites

	Models

	BackendAppPlugin

	SODAR Core
	Installation

	Testing

	Contributing

General Development Guidelines

	Best practices from Two Scoops [https://www.twoscoopspress.com/]
should be followed where applicable

	To maintain consistency, app packages should be named without delimiting
characters, e.g. projectroles and userprofile

	It is recommended to add a “Projectroles dependency” comment when directly
importing e.g. mixins or tags from the projectroles app

	
	Hard-coded imports from apps other than projectroles should be avoided

	
	Use the plugin structure instead

	See the example_backend_app for an example

	Using Bootstrap 4 classes together with SODAR specific overrides and
extensions provided in projectroles.js is recommended

Project App Development

This document details instructions and guidelines for developing
project apps to be used with the SODAR Core framework. This also applies for
modifying existing Django apps into project apps.

Hint

The package example_project_app in the projectroles repository provides
a concrete minimal example of a working project app.

Project App Basics

Characteristics of a project app:

	Provides a functionality related to a project

	Is dynamically included in project views by projectroles using plugins

	Uses the project-based role and access control provided by projectroles

	Is included in projectroles search (optionally)

	Provides a dynamically included element (e.g. content overview) for the
project details page

	Appears in the project menu sidebar in the default projectroles templates

Requirements for setting up a project app:

	Implement project relations and SODAR UUIDs in the app’s Django models

	Use provided mixins, keyword arguments and conventions in views

	Extend projectroles base templates in your templates

	Implement specific templates for dynamic inclusion by Projectroles

	Implement plugins.py with definitions and function implementations

	Implement rules.py with access rules

Fulfilling these requirements is detailed further in this document.

Prerequisites

This documentation assumes you have a Django project with the projectroles
app set up (see the
projectroles integration document).
The instructions can be applied either to modify a previously existing app, or
to set up a fresh app generated in the standard way with
./manage.py startapp.

It is also assumed that apps are more or less created according to best
practices defined by Two Scoops [https://www.twoscoopspress.com/], with the
use of Class-Based Views [https://docs.djangoproject.com/en/1.11/topics/class-based-views/]
being a requirement.

Models

In order to hook up your Django models into projects, there are two
requirements: implementing a project foreign key and a UUID field.

Project Foreign Key

Add a ForeignKey field for the projectroles.models.Project model,
either called project or accessible with a get_project() function
implemented in your model.

If the project foreign key for your is not project, make sure to define
a get_project_filter_key() function. It should return the name of the field
to use as key for filtering your model by project.

Note

If your app contains a complex model structure with e.g. nested models using
foreign keys, it’s not necessary to add this to all your models, just the
topmost one(s) used e.g. in URL kwargs.

Model UUID Field

To provide a unique identifier for objects in the SODAR context, add a
UUIDField with the name of sodar_uuid into your model.

Note

Projectroles links to objects in URLs, links and forms using UUIDs instead
of database private keys. This is strongly recommended for all Django models
in apps using the projectroles framework.

Note

When updating an existing Django model with an existing database, the
sodar_uuid field needs to be populated. See
instructions in Django documentation [https://docs.djangoproject.com/en/1.11/howto/writing-migrations/#migrations-that-add-unique-fields]
on how to create the required migrations.

Model Example

Below is an example of a projectroles-compatible Django model:

import uuid
from django.db import models
from projectroles.models import Project

class SomeModel(models.Model):
 some_field = models.CharField(
 help_text='Your own field'
)
 project = models.ForeignKey(
 Project,
 related_name='some_objects',
 help_text='Project in which this object belongs',
)
 sodar_uuid = models.UUIDField(
 default=uuid.uuid4,
 unique=True,
 help_text='SomeModel SODAR UUID',
)

Note

The related_name field is optional, but recommended as it provides an
easy way to lookup objects of a certain type related to a project. For
example the project foreign key in a model called Document could
feature e.g. related_name='documents'.

Rules File

Create a file rules.py in your app’s directory. You should declare at least
one basic rule for enabling a user to view the app data for the project. This
can be named e.g. {APP_NAME}.view_data. Predicates for the rules can be
found in projectroles and they can be extended within your app if needed.

import rules
from projectroles import rules as pr_rules

rules.add_perm(
 'example_project_app.view_data',
 pr_rules.is_project_owner
 | pr_rules.is_project_delegate
 | pr_rules.is_project_contributor
 | pr_rules.is_project_guest,
)

Hint

The rules.is_superuser predicate is often redundant, as permission
checks are skipped for Django superusers. However, it can be handy if you
e.g. want to define a rule allowing only superuser access for now, with the
potential for adding other predicates later.

ProjectAppPlugin

Create a file plugins.py in your app’s directory. In the file, declare a
ProjectAppPlugin class implementing
projectroles.plugins.ProjectAppPluginPoint. Within the class, implement
member variables and functions as instructed in comments and docstrings.

from projectroles.plugins import ProjectAppPluginPoint
from .urls import urlpatterns

class ProjectAppPlugin(ProjectAppPluginPoint):
 """Plugin for registering app with Projectroles"""
 name = 'example_project_app'
 title = 'Example Project App'
 urls = urlpatterns
 # ...

The following variables and functions are mandatory:

	name: App name (NOTE: should correspond to the app package name or
some functionality may not work as expected)

	title: Printable app title

	urls: Urlpatterns (usually imported from the app’s urls.py file)

	icon: Font Awesome 4.7 icon name (without the fa-* prefix)

	entry_point_url_id: View ID for the app entry point (NOTE: The view
must take the project sodar_uuid as a kwarg named project)

	description: Verbose description of app

	app_permission: Basic permission for viewing app data in project (see
above)

	search_enable: Boolean for enabling/disabling app search

	details_template: Path to template to be included in the project details
page, usually called {APP_NAME}/_details_card.html

	details_title: Title string to be displayed in the project details page
for the app details template

	plugin_ordering: Number to define the ordering of the app on the project
menu sidebar and the details page

Implementing the following is optional:

	app_settings: Implement if project or user specific settings for the app
are needed. See the plugin point definition for an example.

	search_types: Implement if searching the data of the app is enabled

	search_template: Implement if searching the data of the app is enabled

	project_list_columns: Optional custom columns do be shown in the project
list. See the plugin point definition for an example.

	get_taskflow_sync_data(): Applicable only if working with
sodar_taskflow and iRODS

	get_object_link(): If Django models are associated with the app. Used e.g.
by django-sodar-timeline.

	search(): Function called when searching for data related to the app if
search is enabled

	get_statistics(): Return statistics for the siteinfo app. See details in
the siteinfo documentation.

	get_project_list_value(): A function which must be implemented if
project_list_columns are defined, to retrieve a column cell value for a
specific project.

Once you have implemented the rules.py and plugins.py files and added
the app and its URL patterns to the Django site configuration, you can create
the project app plugin in the Django databse with the following command:

$./manage.py syncplugins

You should see the following output to ensure the plugin was successfully
registered:

Registering Plugin for {APP_NAME}.plugins.ProjectAppPlugin

For info on how to implement the specific required views/templates, see the end
of this document.

Views

Certain guidelines must be followed in developing Django web UI views for them
to be successfully used with projectroles.

URL Keyword Arguments

In order to link a view to project and check user permissions using mixins,
the URL keyword arguments must include an argument which matches one of
the following conditions:

	Contains a kwarg project which corresponds to the sodar_uuid
member value of a projectroles.models.Project object

	Contains a kwarg corresponding to the sodar_uuid of another Django
model, which must contain a member field project which is a foreign key
for a Projectroles.models.Project object. The kwarg must be named
after the Django model of the referred object (in lowercase).

	Same as above, but the Django model provides a
get_project() function which returns (you guessed it) a
Projectroles.models.Project object.

Examples:

urlpatterns = [
 # Direct reference to the Project model
 url(
 regex=r'^(?P<project>[0-9a-f-]+)$',
 view=views.ProjectDetailView.as_view(),
 name='detail',
),
 # RoleAssignment model has a "project" member which is also OK
 url(
 regex=r'^members/update/(?P<roleassignment>[0-9a-f-]+)$',
 view=views.RoleAssignmentUpdateView.as_view(),
 name='role_update',
),
]

Mixins

The projectroles.views module provides several useful mixins for augmenting
your view classes to add projectroles functionality. These can be found in the
projectroles.views module.

The most commonly used mixins:

	LoggedInPermissionMixin: Ensure correct redirection of users on no
permissions

	ProjectPermissionMixin: Provides a Project object for permission
checking based on URL kwargs

	ProjectContextMixin: Provides a Project object into the view context
based on URL kwargs

See example_project_app.views.ExampleView for an example.

Templates

Template Structure

It is strongly recommended to extend projectroles/project_base.html in your
project app templates. Just start your template with the following line:

{% extends 'projectroles/project_base.html' %}

The following template blocks are available for overriding or extending when
applicable:

	title: Page title

	css: Custom CSS (extend with {{ block.super }})

	projectroles_extend: Your app content goes here!

	javascript: Custom Javascript (extend with {{ block.super }})

	head_extend: Optional block if you need to include additional content
inside the HTML <head> element

Within the projectroles_extend block, it is recommended to use the
following div classes, both extending the Bootstrap 4 container-fluid
class:

	sodar-subtitle-container: Container for the page title

	sodar-content-container: Container for the actual content of your app

Rules

To control user access within a template, just do it as follows:

{% load rules %}
{% has_perm 'app.do_something' request.user project as can_do_something %}

This checks if the current user from the HTTP request has permission for
app.do_something in the current project retrieved from the page context.

Template Tags

General purpose template tags are available in
projectroles/templatetags/projectroles_common_tags.py. Include them to your
template as follows:

{% load projectroles_common_tags %}

Example

Minimal example for a project app template:

{% extends 'projectroles/project_base.html' %}

{% load projectroles_common_tags %}
{% load rules %}

{% block title %}
 Page Title
{% endblock title %}

{% block head_extend %}
 {# OPTIONAL: extra content under <head> goes here #}
{% endblock head_extend %}

{% block css %}
 {{ block.super }}
 {# OPTIONAL: Extend or override CSS here #}
{% endblock css %}

{% block projectroles_extend %}

 {# Page subtitle #}
 <div class="container-fluid sodar-subtitle-container">
 <h3><i class="fa fa-rocket"></i> App and/or Page Title/h3>
 </div>

 {# App content #}
 <div class="container-fluid sodar-page-container">
 <p>Your app content goes here!</p>
 </div>

{% endblock projectroles_extend %}

{% block javascript %}
 {{ block.super }}
 {# OPTIONAL: include additional Javascript here #}
{% endblock javascript %}

See example_project_app/example.html for a working and fully commented
example of a minimal template.

Hint

If you include some controls on your sodar-subtitle-container class and
want it to remain sticky on top of the page while scrolling, use row
instead of container-fluid and add the bg-white sticky-top classes
to the element.

General Guidelines for Views and Templates

General guidelines and hints for developing views and templates are discussed
in this section.

Referring to Project Type

As of SODAR Core v0.4.3, it is possible to customize the display name for the
project type from the default “project” or “category”. For more information, see
Projectroles Customization.

It is thus recommended that instead of hard coding “project” or “category” in
your views or templates, use the get_display_name() function to refer to
project type.

In templates, this can be achieved with a custom template tag. Example:

{% load projectroles_common_tags %}
{% get_display_name project.type title=True plural=False %}

In views and other Python code, the similar function can be accessed through
utils.py:

from projectroles.utils import get_display_name
display_name = get_display_name(project.type, plural=False)

Hint

If not dealing with a Project object, you can provide the
PROJECT_TYPE_* constant from SODAR_CONSTANTS. In templates, it’s
most straightforward to use “CATEGORY” and “PROJECT”.

Forms

This section contains guidelines for implementing forms.

Custom User Selection Widget

A widget for autocomplete user selection in forms is available and can be build
into any form.

First, the UserAutocompleteWidget needs to be imported from
projectroles/forms.py.

from projectroles.forms import UserAutocompleteWidget

In your form’s Meta class, assign the UserAutocompleteWidget as the
widget of the user field:

class YourForm(forms.ModelForm):

 class Meta:
 model = YourModel
 fields ['user'] # ...
 widgets = {
 'user': UserAutocompleteWidget(
 url='projectroles:autocomplete_user',
 forward=['project'],
)
 }

Some parameters have to be specified:

	url: The URL of the UserAutocompleteAPIView (or another custom API
view)

	forward: Optional list with fields whose values will be forwarded to the
view

If you wish to only display users who are members of a certain project, you need
to include a field with the project’s UUID in the form. This form can be hidden.
This field’s value needs to be forwarded to the autocomplete view (like in the
code example above).

The alternative UserAutocompleteExcludeMembersAPIView view provides the
opposite functionality: only users that are not project members are shown.
That can be useful, for example, in a form to invite new members. To have the
widget exclude project members, just change the URL parameter to the
UserAutocompleteExcludeMembersAPIView’s URL
(projectroles:autocomplete_user_exclude).
In that same way, you can provide your custom view’s URL to the widget to
change its behaviour.

Also, as is required by SODAR, the user and the project fields need to point to
SODAR UUIDs:

self.fields['project'].to_field_name = 'sodar_uuid'
self.fields['user'].to_field_name = 'sodar_uuid'

The following django-autocomplete-light and select2 stylesheets and
javascript files have to be added to the html template that includes the form.

{% block javascript %}
 {{ block.super }}
 <!-- DAL for autocomplete widgets -->
 <script type="text/javascript" src="{% static 'autocomplete_light/jquery.init.js' %}"></script>
 <script type="text/javascript" src="{% static 'autocomplete_light/autocomplete.init.js' %}"></script>
 <script type="text/javascript" src="{% static 'autocomplete_light/vendor/select2/dist/js/select2.full.js' %}"></script>
 <script type="text/javascript" src="{% static 'autocomplete_light/select2.js' %}"></script>
{% endblock javascript %}

{% block css %}
 {{ block.super }}
 <!-- Select2 theme -->
 <link href="https://cdnjs.cloudflare.com/ajax/libs/select2/4.0.6-rc.0/css/select2.min.css" rel="stylesheet" />
{% endblock css %}

When using the RedirectWidget or any other widget with custom javascript,
include the corresponding js file instead of autocomplete_light/select2.js.

If you create your own custom user selection widget on the basis of the
UserAutocompleteWidget take a look at the RedirectWidget as an example,
or check out the django-autocomplete-light documentation for more
information on how to customize your autocomplete-widget.

Specific Views and Templates

A few specific views/templates are expected to be implemented.

App Entry Point

As described in the Plugins chapter, an app entry point view is to be defined
in the ProjectAppPlugin. This is mandatory.

The view must take a project URL kwarg which corresponds to a
Project.sodar_uuid.

For an example, see example_project_app.views.ExampleView and the associated
template.

Project Details Element

A sub-template to be included in the project details page (the project’s “front
page” provided by projectroles, where e.g. overview of app content is shown).

Traditionally these files are called _details_card.html, but you can name
them as you wish and point to the related template in the details_template
variable of your plugin.

It is expected to have the content in a card-body container:

<div class="card-body">
 {# Content goes here #}
</div>

Project Search Function and Template

If you want to implement search in your project app, you need to implement the
search() function in your plugin as well as a template for displaying the
results.

Hint

Implementing search can be complex. If you have access to the main SODAR
repository, apps in that project might prove useful examples.

The search() Function

See the signature of search() in
projectroles.plugins.ProjectAppPluginPoint. The arguments are as follows:

	
	search_term

	
	Term to be searched for (string). Should be self-explanatory.

	Multiple strings or separating multiple phrases with quotation marks not
yet supported.

	
	user

	
	User object for user initiating search

	
	search_type

	
	The type of object to search for (string, optional)

	Used to restrict search to specific types of objects

	You can specify supported types in the plugin’s search_types list.

	Examples: file, sample..

	
	keywords

	
	Special search keywords, e.g. “exact”

	NOTE: Currently not implemented

Note

Within this function, you are expected to verify appropriate access of the
seaching user yourself!

The return data is a dictionary, which is split by groups in case your app can
return multiple different lists for data. This is useful where e.g. the same
type of HTML list isn’t suitable for all returnable types. If only returning one
type of data, you can just use e.g. all as your only category. Example of
the result:

return {
 'all': { # 1-N categories to be included
 'title': 'List title', # Title of the result list to be displayed
 'search_types': [], # Object types included in this category
 'items': [] # The actual objects returned
 }
 }

Search Template

Projectroles will provide your template context the search_results object,
which corresponds to the result dict of the aforementioned function. There are
also includes for formatting the results list, which you are encouraged to use.

Example of a simple results template, in case of a single all category:

 {% if search_results.all.items|length > 0 %}

 {# Include standard search list header here #}
 {% include 'projectroles/_search_header.html' with search_title=search_results.all.title result_count=search_results.all.items|length %}

 {# Set up a table with your results #}
 <table class="table table-striped sodar-card-table sodar-search-table" id="sodar-ff-search-table">
 <thead>
 <tr>
 <th>Name</th>
 <th>Some Other Field</th>
 </tr>
 </thead>
 <tbody>
 {% for item in search_results.all.items %}
 <tr>
 <td>
 {{ item.name }}
 </td>
 <td>
 {{ item.some_other_field }}
 </td>
 </tr>
 {% endfor %}
 </tbody>
 </table>

 {# Include standard search list footer here #}
 {% include 'projectroles/_search_footer.html' %}

{% endif %}

Tour Help

SODAR Core uses Shepherd [https://shipshapecode.github.io/shepherd/docs/welcome/]
to present an optional interactive tour for a rendered page. To enable the tour
in your template, set it up inside the javascript template block. Within an
inline javascript strucure, set the tourEnabled variable to true and add
steps according to the Shepherd documentation [https://shipshapecode.github.io/shepherd].

Example:

{% block javascript %}
 {{ block.super }}

 {# Tour content #}
 <script type="text/javascript">
 tourEnabled = true;

 /* Normal step */
 tour.addStep('id_of_step', {
 title: 'Step Title',
 text: 'Description of the step',
 attachTo: '#some-element top',
 advanceOn: '.docs-link click',
 showCancelLink: true
 });

 /* Conditional step */
 if ($('.potentially-existing-element').length) {
 tour.addStep('id_of_another_step', {
 title: 'Another Title',
 text: 'Another description here',
 attachTo: '.potentially-existing-element right',
 advanceOn: '.docs-link click',
 showCancelLink: true
 });
 }

 </script>
{% endblock javascript %}

Warning

Make sure you call {{ block.super }} at the start of the declared
javascript block or you will overwrite the site’s default Javascript
setup!

API Views

API View usage will be explained in this chapter, currently under construction.

Warning

A unified SODAR API is currently under development and will be documented
once stable. Current practices and base classes for API views are subject to
change!

Ajax API Views

To set up Ajax API views for the UI, you can use the standard login and project
permission mixins along with APIPermissionMixin together with any Django
Rest Framework view class. Permissions can be managed as with normal Django
views. Example with generic APIView:

from rest_framework.views import APIView
from projectroles.views import (
 LoginRequiredMixin,
 ProjectPermissionMixin,
 APIPermissionMixin,
)

class ExampleAjaxAPIView(
 LoginRequiredMixin,
 ProjectPermissionMixin,
 APIPermissionMixin,
 APIView,
):

permission_required = 'projectroles.view_project'

def get(self, request):
 # ...

TODO

	Naming conventions

	Examples of recurring template styles (e.g. forms)

Site App Development

This document details instructions and guidelines for developing site apps
to be used with the SODAR Core framework.

It is recommended to read Project App Development before this document.

Site App Basics

Site apps are basically normal Django apps not hooked to SODAR projects.
However, they provide a few nice features to be used in a SODAR-enabled Django
site:

	Rules for accessing app data (similar to project apps but without the need for
being associated with a project)

	Dynamic inclusion into the site and default templates via plugins

	The ability to show site-wide messages to users

Prerequisites

See Project App Development.

Models

No specific model implementation is required. However, it is strongly to refer
to objects using sodar_uuid fields instead of the database private key.

Rules File

Generate a rules.py file similar to a project app. However, you should not
use project predicates in this one. Example:

import rules
Allow viewing data
rules.add_perm('{APP_NAME}.view_data', rules.is_authenticated)

SiteAppPlugin

Create a file plugins.py in your app’s directory. In the file, declare a
SiteAppPlugin class implementing
projectroles.plugins.SiteAppPluginPoint. Within the class, implement
member variables and functions as instructed in comments and docstrings.

from projectroles.plugins import SiteAppPluginPoint
from .urls import urlpatterns

class SiteAppPlugin(SiteAppPluginPoint):
 """Plugin for registering a site-wide app"""
 name = 'example_site_app'
 title = 'Example Site App'
 urls = urlpatterns
 # ...

The following variables and functions are mandatory:

	name: App name (ideally should correspond to the app package name)

	title: Printable app title

	urls: Urlpatterns (usually imported from the app’s urls.py file)

	icon: Font Awesome 4.7 icon name (without the fa-* prefix)

	entry_point_url_id: View ID for the app entry point

	description: Verbose description of app

	app_permission: Basic permission for viewing app data in project (see
above)

Implementing the following is optional:

	get_messages(): Implement if your site app needs to display site-wide
messages for users.

Views

In your views, you can still use projectroles mixins which are not related to
projects. Especially LoggedInPermissionMixin is useful to ensure users not
allowed to access a view are properly redirected. Example:

from django.views.generic import TemplateView
from projectroles.views import LoggedInPermissionMixin

class ExampleView(LoggedInPermissionMixin, TemplateView):
 """Site app example view"""
 permission_required = 'example_site_app.view_data'
 template_name = 'example_site_app/example.html'

Note

The entry point URL is not expected to have any URL kwargs in the current
implementation. If you intend to use a view which makes use of URL kwargs,
you may need to modify it into also accepting a request without any
parameters (e.g. displaying default content for the view).

Templates

It is recommended for you to extend projectroles/base.html and put your
actual app content within the projectroles block. Example:

{# Projectroles dependency #}
{% extends 'projectroles/base.html' %}
{% load projectroles_common_tags %}

{% block title %}
 Example Site App Page Title
{% endblock title %}

{% block projectroles %}

 <div class="container sodar-subtitle-container">
 <h2><i class="fa fa-umbrella"></i> Example Site App</h2>
 </div>

 <div class="container-fluid sodar-page-container">
 <div class="alert alert-info">
 This is an example and the entry point for <code>example_site_app</code>.
 </div>
 </div>

{% endblock projectroles %}

Site App Messages

The site app provides a way to display certain messages to users. For this, you
need to implement get_messages() in the SiteAppPlugin class.

If you need to control e.g. which user should see the message or removal of a
message after showing, you need to implement relevant logic in the function.

Example:

def get_messages(self, user=None):
 """
 Return a list of messages to be shown to users.
 :param user: User object (optional)
 :return: List of dicts or and empty list if no messages
 """
 return [{
 'content': 'Message content in here, can contain html',
 'color': 'info', # Corresponds to bg-* in Bootstrap
 'dismissable': True # False for non-dismissable
 'require_auth': True # Only view for authorized users
 }]

Backend App Development

This document details instructions and guidelines for developing
backend apps to be used with the SODAR Core framework.

It is recommended to read Project App Development before this document.

Backend App Basics

Backend apps are intended as apps used by other apps via their plugin, without
requiring hard-coded imports. These may provide their own views for e.g. Ajax
API functionality, but mostly they’re intended to be internal (hence the name).

Prerequisites

See Project App Development.

Models

No specific model implementation is required. However, it is strongly to refer
to objects using sodar_uuid fields instead of the database private key.

BackendAppPlugin

The plugin is detected and retrieved using a BackendAppPlugin.

Declaring the Plugin

Create a file plugins.py in your app’s directory. In the file, declare a
BackendAppPlugin class implementing
projectroles.plugins.BackendPluginPoint. Within the class, implement
member variables and functions as instructed in comments and docstrings.

from projectroles.plugins import BackendPluginPoint
from .urls import urlpatterns

class BackendAppPlugin(BackendPluginPoint):
 """Plugin for registering a backend app"""
 name = 'example_backend_app'
 title = 'Example Backend App'
 urls = urlpatterns
 # ...

The following variables and functions are mandatory:

	name: App name (ideally should correspond to the app package name)

	title: Printable app title

	icon: Font Awesome 4.7 icon name (without the fa-* prefix)

	description: Verbose description of app

	get_api(): Function for retrieving the API class for the backend, to be
implemented

Implementing the following is optional:

	get_statistics(): Return statistics for the siteinfo app. See details in
the siteinfo documentation.

Hint

If you want to implement a backend API which is closely tied to a project
app, there’s no requirement to declare your backend as a separate Django
app. You can just include the BackendAppPlugin in your app’s
plugins.py along with your ProjectAppPlugin. See the
timeline app for an example of this.

Using the Plugin

To retrieve the API for the plugin, use the
function projectroles.plugins.get_backend_api() as follows:

from projectroles.plugins import get_backend_api
example_api = get_backend_api('example_backend_app')

if example_api: # Make sure the API is there, and only after that..
 pass # ..do stuff with the API

SODAR Core Development

This document details instructions and guidelines for development of the SODAR
Core package.

Installation

Instructions on how to install a local development version of SODAR Core.
Ubuntu 16.04 LTS (Xenial) is the supported OS at this time. System dependencies
may vary for different OS versions or distributions.

System Installation

First you need to install OS dependencies, PostgreSQL 9.6 and Python3.6.

$ sudo utility/install_os_dependencies.sh
$ sudo utility/install_python.sh
$ sudo utility/install_postgres.sh

Database Setup

Create a PostgreSQL user and a database for your application. In the example,
we use sodar_core for the database, user name and password. Make sure to
give the user the permission to create further PostgreSQL databases (used for
testing).

$ sudo su - postgres
$ psql
$ CREATE DATABASE sodar_core;
$ CREATE USER sodar_core WITH PASSWORD 'sodar_core';
$ GRANT ALL PRIVILEGES ON DATABASE sodar_core to sodar_core;
$ ALTER USER sodar_core CREATEDB;
$ \q

You have to add the credentials in the environment variable DATABASE_URL.
For development it is recommended to place this variable in an .env file and
set DJANGO_READ_DOT_ENV_FILE=1 in your actual environment. See
config/settings/base.py for more information.

$ export DATABASE_URL='postgres://sodar_core:sodar_core@127.0.0.1/sodar_core'

Project Setup

Clone the repository, setup and activate the virtual environment. Once in
the environment, install Python requirements for the project:

$ git clone git+https://github.com/bihealth/sodar_core.git
$ cd sodar_core
$ pip install virtualenv
$ virtualenv -p python3.6 .venv
$ source .venv/bin/activate
$ utility/install_python_dependencies.sh

LDAP Setup (Optional)

If you will be using LDAP/AD auth on your site, make sure to also run:

$ sudo utility/install_ldap_dependencies.sh
$ pip install -r requirements/ldap.txt

Final Setup

Initialize the database (this will also synchronize django-plugins):

$./manage.py migrate

Create a Django superuser for the example_site:

$./manage.py createsuperuser

Now you should be able to run the server:

$./run.sh

Testing

To run unit tests, you have to install the headless Chrome driver (if not yet
present on your system), followed by the Python test requirements:

$ sudo utility/install_chrome.sh
$ pip install -r requirements/test.txt

Now you can run all tests with the following script:

$./test.sh

If you want to only run a certain subset of tests, use e.g.:

$./test.sh projectroles.tests.test_views

For running tests with SODAR Taskflow (not currently publicly available), you
can use the supplied shortcut script:

$./test_taskflow.sh

Contributing

SODAR Core is currently in active development in a private BIH repository. The
public GitHub repository is primarily intended for publishing stable releases.
Furthermore, the issue IDs within the code and documentation point to our
private issue tracker unless otherwise mentioned.

Breaking Changes

This document details breaking changes from previous SODAR Core releases. It is
recommended to review these notes whenever upgrading from an older SODAR Core
version. For a complete list of changes in the current release, see the
CHANGELOG.rst file.

v0.6.2 (2019-06-21)

System Prerequisites

The minimum version requirement for Django has been bumped to 1.11.21.

Template Tag for Django Settings Access Renamed

The get_setting() template tag in projectroles_common_tags has been
renamed into get_django_setting(). In this version the old tag still works,
but this deprecation protection will be removed in the next release. Please
update any references to this tag in your templates.

v0.6.1 (2019-06-05)

App Settings Deprecation Protection Removed

The deprecation protection set up in the previous release has been removed.
Project app plugins are now expected to declare app_settings in the format
introduced in v0.6.0.

v0.6.0 (2019-05-10)

App Settings (Formerly Project Settings)

The former Project Settings module has been completely overhauled in this
version and requries changes to your app plugins.

The projectroles.project_settings module has been renamed into
projectroles.app_settings. Please update your dependencies accordingly.

Settings must now be defined in app_settings. The format is identical to
the previous project_settings dictionary, except that a scope field is
expected for each settings. Currently valid values are “PROJECT” and “USER”. It
is recommended to use the related constants from SODAR_CONSTANTS
instead of hard coded strings.

Example of settings:

#: Project and user settings
app_settings = {
 'project_bool_setting': {
 'scope': 'PROJECT',
 'type': 'BOOLEAN',
 'default': False,
 'description': 'Example project setting',
 },
 'user_str_setting': {
 'scope': 'USER',
 'type': 'STRING',
 'label': 'String example',
 'default': '',
 'description': 'Example user setting',
 },
}

Warning

Deprecation protection is place in this version for retrieving settings from
project_settings if it has not been changed into app_settings in
your project apps. This protection will be removed in the next SODAR
Core release.

v0.5.1 (2019-04-16)

Site App Templates

Templates for site apps should extend projectroles/base.html. In earlier
versions the documentation erroneously stated projectroles/project_base.html
as the base template to use. Extending that document does work in this version
as long as you override the given template blocks. However, it is not
recommended and may break in the future.

Sodarcache App Changes

The following potentially breaking changes have been made to the sodarcache app.

App configuration naming has been changed to
sodarcache.apps.SodarcacheConfig. Please update config/settings/base.py
accordingly.

The field user has been made optional in models and the API.

An optional user argument has been added to
ProjectAppPlugin.update_cache(). Correspondingly, the similar argument in
ProjectCacheAPI.set_cache_item() has been made optional. Please update your
plugin implementations and function calls accordingly.

The updatecache management command has been renamed to synccache.

Helper get_app_names() Fixed

The projectroles.utils.get_app_names() function will now return nested app
names properly instead of omitting everything beyond the topmost module.

Default Admin Setting Deprecation Removed

The PROJECTROLES_ADMIN_OWNER setting no longer works. Use
PROJECTROLES_DEFAULT_ADMIN instead.

v0.5.0 (2019-04-03)

Default Admin Setting Renamed

The setting PROJECTROLES_ADMIN_OWNER has been renamed into
PROJECTROLES_DEFAULT_ADMIN to better reflect its uses. Please rename this
settings variable on your site configuration to prevent issues.

Note

In this release, the old settings value is still accepted in remote project
management to avoid sudden crashes. This deprecation will be removed in the
next release.

Bootstrap 4.3.1 Upgrade

The Bootstrap and Popper dependencies have been updated to the latest versions.
Please test your site to make sure this does not result in compatibility issues.
The known issue of HTML content not showing in popovers has already been fixed
in projectroles.js.

Default Templates Modified

The default templates base_site.html and login.html have been modified
in this version. If you override them with your own altered versions, please
review the difference and update your templates as appropriate.

v0.4.5 (2019-03-06)

System Prerequisites

The minimum version requirement for Django has been bumped to 1.11.20.

User Autocomplete Widget Support

Due to the use of autocomplete widgets for users, the following apps must be
added into THIRD_PARTY_APPS in config/settings/base.py, regardless of
whether you intend to use them in your own apps:

THIRD_PARTY_APPS = [
 # ...
 'dal',
 'dal_select2',
]

Project.get_delegate() Helper Renamed

As the limit for delegates per project is now arbitrary, the
Project.get_delegate() helper function has been replaced by
Project.get_delegates(). The new function returns a QuerySet.

Bootstrap 4 Crispy Forms Overrides Removed

Deprecated site-wide Bootstrap 4 theme overrides for django-crispy-forms
were removed from the example site and are no longer supported. These
workarounds were located in {SITE_NAME}/templates/bootstrap4/. Unless
specifically required forms on your site, it is recommended to remove the files
from your project.

Note

If you choose to keep the files or similar workarounds in your site, you
are responsible of maintaining them and ensuring SODAR compatibility. Such
site-wide template overrides are outside of the scope for SODAR Core
components. Leaving the existing files in without maintenance may cause
undesireable effects in the future.

Database File Upload Widget

Within SODAR Core apps, the only known issue caused by removal of the
aforementioned Bootstrap 4 form overrides in the file upload widget of the
django-db-file-upload package. If you are using the file upload package in
your own SODAR apps and have removed the site-wide Crispy overrides, you can fix
this particular widget by adding the following snippet into your form template.
Make sure to replace {FIELD_NAME} with the name of your form field.

{% block css %}
 {{ block.super }}
 {# Workaround for django-db-file-storage Bootstrap4 issue (#164) #}
 <style type="text/css">
 div#div_id_{FIELD_NAME} div p.invalid-feedback {
 display: block;
 }
 </style>
{% endblock css %}

Alternatively, you can create a common override in your project-wide CSS file.

v0.4.4 (2019-02-19)

Textarea Height in Forms

Due to this feature breaking the layout of certain third party components,
textarea height in forms is no longer adjusted automatically. An exception to
this are Pagedown-specific markdown fields.

To adjust the height of a textarea field in your forms, the easiest way is to
modify the widget of the related field in the __init__() function of your
form as follows:

self.fields['field_name'].widget.attrs['rows'] = 4

v0.4.3 (2019-01-31)

SODAR Constants

PROJECT_TYPE_CHOICES has been removed from SODAR_CONSTANTS, as it can
vary depending on implemented DISPLAY_NAMES. If needed, the currently
applicable form structure can be imported from projectroles.forms.

v0.4.2 (2019-01-25)

System Prerequisites

The following minimum version requirements have been upgraded in this release:

	Django 1.11.18+

	Bootstrap 4.2.1

	JQuery 3.3.1

	Numerous required Python packages (see requirements/*.txt)

Please go through your site requirements and update dependencies accordingly.
For project stability, it is still recommended to use exact version numbers for
Python requirements in your SODAR Core based site.

If you are overriding the projectroles/base_site.html in your site, make
sure to update Javascript and CSS includes accordingly.

Note

Even though the recommended Python version from Django 1.11.17+ is 3.7, we
only support Python 3.6 for this release. The reason is that some
dependencies still exhibit problems with the most recent Python release at
the time of writing.

ProjectAccessMixin

The _get_project() function in ProjectAccessMixin has been renamed into
get_project(). Arguments for the function are now optional and may be
removed in a subsequent release: self.request and self.kwargs of the
view class will be used if the arguments are not present.

Base API View

The base SODAR API view has been renamed from BaseAPIView into
SODARAPIBaseView.

Taskflow Backend API

The cleanup() function in TaskflowAPI now correctly raises a
CleanupException if SODAR Taskflow encounters an error upon calling its
cleanup operation. This change should not affect normally running your site, as
the function in question should only be called during Taskflow testing.

v0.4.1 (2019-01-11)

System Prerequisites

Changes in system requirements:

	Ubuntu 16.04 Xenial is the target OS version.

	Python 3.6 or newer required: 3.5 and older releases no longer supported.

	PostgreSQL 9.6 is the recommended minimum version for the database.

Site Messages in Login Template

If your site overrides the default login template in
projectroles/login.html, make sure your overridden version contains an
include for projectroles/_messages.html. Following the SODAR Core template
conventions, it should be placed as the first element under the
container-fluid div in the content block. Otherwise, site app messages
not requiring user authorization will not be visible on the login page. Example:

{% block content %}
 <div class="container-fluid">
 {# Django messages / site app messages #}
 {% include 'projectroles/_messages.html' %}
 {# ... #}
 </div>
{% endblock content %}

v0.4.0 (2018-12-19)

List Button Classes in Templates

Custom small button and dropdown classes for including buttons within tables and
lists have been modified. The naming has also been unified. The following
classes should now be used:

	Button group: sodar-list-btn-group (formerly sodar-edit-button-group)

	Button: sodar-list-btn

	Dropdown: sodar-list-dropdown (formerly sodar-edit-dropdown)

See projectroles templates for examples.

Warning

The standard bootstrap class btn-sm should not be used with these
custom classes!

SODAR Taskflow v0.3.1 Required

If using SODAR Taskflow, this release requires release v0.3.1 or higher due to
mandatory support of the TASKFLOW_SODAR_SECRET setting.

Taskflow Secret String

If you are using the taskflow backend app, you must set the value of
TASKFLOW_SODAR_SECRET in your Django settings. Note that this must match the
similarly named setting in your SODAR Taskflow instance!

v0.3.0 (2018-10-26)

Remote Site Setup

For specifying the role of your site in remote project metadata synchronization,
you will need to add two new settings to your Django site configuration:

The PROJECTROLES_SITE_MODE setting sets the role of your site in remote
project sync and it is mandatory. Accepted values are SOURCE and
TARGET. For deployment, it is recommended to fetch this setting from
environment variables.

If your site is set in TARGET mode, the boolean setting
PROJECTROLES_TARGET_CREATE must also be included to control whether
creation of local projects is allowed. If your site is in SOURCE mode, this
setting can be included but will have no effect.

Furthermore, if your site is in TARGET mode you must include the
PROJECTROLES_ADMIN_OWNER setting, which must point to an existing local
superuser account on your site.

Example for a SOURCE site:

Projectroles app settings
PROJECTROLES_SITE_MODE = env.str('PROJECTROLES_SITE_MODE', 'SOURCE')

Example for a TARGET site:

Projectroles app settings
PROJECTROLES_SITE_MODE = env.str('PROJECTROLES_SITE_MODE', 'TARGET')
PROJECTROLES_TARGET_CREATE = env.bool('PROJECTROLES_TARGET_CREATE', True)
PROJECTROLES_ADMIN_OWNER = env.str('PROJECTROLES_ADMIN_OWNER', 'admin')

General API Settings

Add the following lines to your configuration to enable the general API
settings:

SODAR_API_DEFAULT_VERSION = '0.1'
SODAR_API_MEDIA_TYPE = 'application/vnd.bihealth.sodar+json'

DataTables Includes

Includes for the DataTables Javascript library are no longer included in
templates by default. If you want to use DataTables, include the required CSS
and Javascript in relevant templates. See the projectroles/search.html
template for an example.

 Python Module Index

 p |
 s |
 t

 		 	

 		
 p	

 	[image: -]
 	
 projectroles	

 	
 	
 projectroles.models	

 	
 	
 projectroles.plugins	

 	
 	
 projectroles.templatetags.projectroles_common_tags	

 	
 	
 projectroles.utils	

 		 	

 		
 s	

 	[image: -]
 	
 sodarcache	

 	
 	
 sodarcache.models	

 		 	

 		
 t	

 	[image: -]
 	
 timeline	

 	
 	
 timeline.models	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	active (projectroles.models.ProjectInvite attribute)

 	add_event() (timeline.api.TimelineAPI static method)

 	add_object() (timeline.models.ProjectEvent method)

 	app (timeline.models.ProjectEvent attribute)

 	app_name (sodarcache.models.BaseCacheItem attribute)

 	app_permission (projectroles.plugins.RemoteSiteAppPlugin attribute)

 	
 	app_plugin (projectroles.models.AppSetting attribute)

 	AppSetting (class in projectroles.models)

 	AppSetting.DoesNotExist

 	AppSetting.MultipleObjectsReturned

 	AppSettingAPI (class in projectroles.app_settings)

 	AppSettingManager (class in projectroles.models)

 	assign_user_group() (in module projectroles.models)

B

 	
 	BackendPluginPoint (class in projectroles.plugins)

 	BaseCacheItem (class in sodarcache.models)

 	
 	build_invite_url() (in module projectroles.utils)

 	build_secret() (in module projectroles.utils)

C

 	
 	change_plugin_status() (in module projectroles.plugins)

 	check_backend() (in module projectroles.templatetags.projectroles_common_tags)

 	
 	classified (timeline.models.ProjectEvent attribute)

 	cleanup() (taskflowbackend.api.TaskflowAPI method)

 	core_version() (in module projectroles.templatetags.projectroles_common_tags)

D

 	
 	data (sodarcache.models.JSONCacheItem attribute)

 	date_access (projectroles.models.RemoteProject attribute)

 	date_created (projectroles.models.ProjectInvite attribute)

 	date_expire (projectroles.models.ProjectInvite attribute)

 	date_modified (sodarcache.models.BaseCacheItem attribute)

 	delete_cache() (sodarcache.api.SodarCacheAPI class method)

 	
 	description (projectroles.models.Project attribute)

 	(projectroles.models.RemoteSite attribute)

 	(projectroles.models.Role attribute)

 	(projectroles.plugins.RemoteSiteAppPlugin attribute)

 	(timeline.models.ProjectEvent attribute)

 	(timeline.models.ProjectEventStatus attribute)

E

 	
 	email (projectroles.models.ProjectInvite attribute)

 	entry_point_url_id (projectroles.plugins.RemoteSiteAppPlugin attribute)

 	event (timeline.models.ProjectEventObjectRef attribute)

 	(timeline.models.ProjectEventStatus attribute)

 	
 	event_name (timeline.models.ProjectEvent attribute)

 	extra_data (timeline.models.ProjectEvent attribute)

 	(timeline.models.ProjectEventObjectRef attribute)

 	(timeline.models.ProjectEventStatus attribute)

F

 	
 	find() (projectroles.models.ProjectManager method)

 	
 	force_wrap() (in module projectroles.templatetags.projectroles_common_tags)

G

 	
 	get_access_date() (projectroles.models.RemoteSite method)

 	get_active_plugins() (in module projectroles.plugins)

 	get_all_defaults() (projectroles.app_settings.AppSettingAPI class method)

 	get_all_settings() (projectroles.app_settings.AppSettingAPI class method)

 	get_api() (projectroles.plugins.BackendPluginPoint method)

 	get_app_names() (in module projectroles.utils)

 	get_app_plugin() (in module projectroles.plugins)

 	get_app_setting() (in module projectroles.templatetags.projectroles_common_tags)

 	(projectroles.app_settings.AppSettingAPI class method)

 	get_assignment() (projectroles.models.RoleAssignmentManager method)

 	get_backend_api() (in module projectroles.plugins)

 	get_cache_item() (sodarcache.api.SodarCacheAPI class method)

 	get_children() (projectroles.models.Project method)

 	get_class() (in module projectroles.templatetags.projectroles_common_tags)

 	get_current_status() (timeline.models.ProjectEvent method)

 	get_default_setting() (projectroles.app_settings.AppSettingAPI class method)

 	get_delegates() (projectroles.models.Project method)

 	get_depth() (projectroles.models.Project method)

 	get_display_name() (in module projectroles.templatetags.projectroles_common_tags)

 	(in module projectroles.utils)

 	get_django_setting() (in module projectroles.templatetags.projectroles_common_tags)

 	get_error_msg() (taskflowbackend.api.TaskflowAPI method)

 	get_event_description() (timeline.api.TimelineAPI static method)

 	get_expiry_date() (in module projectroles.utils)

 	get_extra_data_link() (projectroles.plugins.ProjectAppPluginPoint method)

 	get_full_name() (projectroles.models.SODARUser method)

 	get_full_title() (projectroles.models.Project method)

 	get_full_url() (in module projectroles.templatetags.projectroles_common_tags)

 	get_history_dropdown() (in module projectroles.templatetags.projectroles_common_tags)

 	get_info_link() (in module projectroles.templatetags.projectroles_common_tags)

 	get_members() (projectroles.models.Project method)

 	
 	get_messages() (projectroles.plugins.SiteAppPluginPoint method)

 	get_object() (projectroles.plugins.ProjectAppPluginPoint method)

 	get_object_events() (timeline.models.ProjectEventManager method)

 	get_object_link() (projectroles.plugins.ProjectAppPluginPoint method)

 	(timeline.api.TimelineAPI static method)

 	get_object_url() (timeline.api.TimelineAPI static method)

 	get_owner() (projectroles.models.Project method)

 	get_parents() (projectroles.models.Project method)

 	get_project() (projectroles.models.RemoteProject method)

 	get_project_by_uuid() (in module projectroles.templatetags.projectroles_common_tags)

 	get_project_cache() (sodarcache.api.SodarCacheAPI class method)

 	get_project_events() (timeline.api.TimelineAPI static method)

 	get_project_link() (in module projectroles.templatetags.projectroles_common_tags)

 	get_project_list_value() (projectroles.plugins.ProjectAppPluginPoint method)

 	get_project_title_html() (in module projectroles.templatetags.projectroles_common_tags)

 	get_remote_icon() (in module projectroles.templatetags.projectroles_common_tags)

 	get_setting() (in module projectroles.templatetags.projectroles_common_tags)

 	get_setting_defs() (projectroles.app_settings.AppSettingAPI class method)

 	get_setting_value() (projectroles.models.AppSettingManager method)

 	get_source_site() (projectroles.models.Project method)

 	get_statistics() (projectroles.plugins.BackendPluginPoint method)

 	(projectroles.plugins.ProjectAppPluginPoint method)

 	get_status_changes() (timeline.models.ProjectEvent method)

 	get_taskflow_sync_data() (projectroles.plugins.ProjectAppPluginPoint method)

 	get_timestamp() (timeline.models.ProjectEvent method)

 	get_update_time() (sodarcache.api.SodarCacheAPI class method)

 	get_url() (projectroles.models.RemoteSite method)

 	get_user_by_username() (in module projectroles.templatetags.projectroles_common_tags)

 	get_user_display_name() (in module projectroles.utils)

 	get_user_html() (in module projectroles.templatetags.projectroles_common_tags)

 	get_value() (projectroles.models.AppSetting method)

H

 	
 	handle_ldap_login() (in module projectroles.models)

 	
 	has_role() (projectroles.models.Project method)

 	highlight_search_term() (in module projectroles.templatetags.projectroles_common_tags)

I

 	
 	icon (projectroles.plugins.RemoteSiteAppPlugin attribute)

 	
 	is_remote() (projectroles.models.Project method)

 	issuer (projectroles.models.ProjectInvite attribute)

J

 	
 	JSONCacheItem (class in sodarcache.models)

 	
 	JSONCacheItem.DoesNotExist

 	JSONCacheItem.MultipleObjectsReturned

L

 	
 	label (timeline.models.ProjectEventObjectRef attribute)

 	
 	level (projectroles.models.RemoteProject attribute)

M

 	
 	message (projectroles.models.ProjectInvite attribute)

 	
 	mode (projectroles.models.RemoteSite attribute)

N

 	
 	name (projectroles.models.AppSetting attribute)

 	(projectroles.models.ProjectUserTag attribute)

 	(projectroles.models.RemoteSite attribute)

 	(projectroles.models.Role attribute)

 	(projectroles.plugins.RemoteSiteAppPlugin attribute)

 	(sodarcache.models.BaseCacheItem attribute)

 	(timeline.models.ProjectEventObjectRef attribute)

O

 	
 	object_model (timeline.models.ProjectEventObjectRef attribute)

 	
 	object_uuid (timeline.models.ProjectEventObjectRef attribute)

P

 	
 	parent (projectroles.models.Project attribute)

 	Project (class in projectroles.models)

 	project (projectroles.models.AppSetting attribute)

 	(projectroles.models.ProjectInvite attribute)

 	(projectroles.models.ProjectUserTag attribute)

 	(projectroles.models.RemoteProject attribute)

 	(projectroles.models.RoleAssignment attribute)

 	(sodarcache.models.BaseCacheItem attribute)

 	(timeline.models.ProjectEvent attribute)

 	Project.DoesNotExist

 	Project.MultipleObjectsReturned

 	project_uuid (projectroles.models.RemoteProject attribute)

 	ProjectAppPluginPoint (class in projectroles.plugins)

 	ProjectEvent (class in timeline.models)

 	ProjectEvent.DoesNotExist

 	ProjectEvent.MultipleObjectsReturned

 	ProjectEventManager (class in timeline.models)

 	
 	ProjectEventObjectRef (class in timeline.models)

 	ProjectEventObjectRef.DoesNotExist

 	ProjectEventObjectRef.MultipleObjectsReturned

 	ProjectEventStatus (class in timeline.models)

 	ProjectEventStatus.DoesNotExist

 	ProjectEventStatus.MultipleObjectsReturned

 	ProjectInvite (class in projectroles.models)

 	ProjectInvite.DoesNotExist

 	ProjectInvite.MultipleObjectsReturned

 	ProjectManager (class in projectroles.models)

 	projectroles.models (module)

 	projectroles.plugins (module)

 	projectroles.templatetags.projectroles_common_tags (module)

 	projectroles.utils (module)

 	ProjectUserTag (class in projectroles.models)

 	ProjectUserTag.DoesNotExist

 	ProjectUserTag.MultipleObjectsReturned

R

 	
 	readme (projectroles.models.Project attribute)

 	RemoteProject (class in projectroles.models)

 	RemoteProject.DoesNotExist

 	RemoteProject.MultipleObjectsReturned

 	RemoteSite (class in projectroles.models)

 	RemoteSite.DoesNotExist

 	RemoteSite.MultipleObjectsReturned

 	RemoteSiteAppPlugin (class in projectroles.plugins)

 	render_markdown() (in module projectroles.templatetags.projectroles_common_tags)

 	
 	Role (class in projectroles.models)

 	role (projectroles.models.ProjectInvite attribute)

 	(projectroles.models.RoleAssignment attribute)

 	Role.DoesNotExist

 	Role.MultipleObjectsReturned

 	RoleAssignment (class in projectroles.models)

 	RoleAssignment.DoesNotExist

 	RoleAssignment.MultipleObjectsReturned

 	RoleAssignmentManager (class in projectroles.models)

S

 	
 	save() (projectroles.models.AppSetting method)

 	(projectroles.models.Project method)

 	(projectroles.models.RemoteSite method)

 	(projectroles.models.RoleAssignment method)

 	search() (projectroles.plugins.ProjectAppPluginPoint method)

 	secret (projectroles.models.ProjectInvite attribute)

 	(projectroles.models.RemoteSite attribute)

 	set_app_setting() (projectroles.app_settings.AppSettingAPI class method)

 	set_cache_item() (sodarcache.api.SodarCacheAPI class method)

 	set_status() (timeline.models.ProjectEvent method)

 	set_user_group() (in module projectroles.utils)

 	site (projectroles.models.RemoteProject attribute)

 	site_version() (in module projectroles.templatetags.projectroles_common_tags)

 	SiteAppPluginPoint (class in projectroles.plugins)

 	sodar_uuid (projectroles.models.AppSetting attribute)

 	(projectroles.models.Project attribute)

 	(projectroles.models.ProjectInvite attribute)

 	(projectroles.models.ProjectUserTag attribute)

 	(projectroles.models.RemoteProject attribute)

 	(projectroles.models.RemoteSite attribute)

 	(projectroles.models.RoleAssignment attribute)

 	(projectroles.models.SODARUser attribute)

 	(sodarcache.models.BaseCacheItem attribute)

 	(timeline.models.ProjectEvent attribute)

 	
 	sodarcache.models (module)

 	SodarCacheAPI (class in sodarcache.api)

 	SODARUser (class in projectroles.models)

 	static_file_exists() (in module projectroles.templatetags.projectroles_common_tags)

 	status_type (timeline.models.ProjectEventStatus attribute)

 	submit() (taskflowbackend.api.TaskflowAPI method)

 	submit_status (projectroles.models.Project attribute)

T

 	
 	TaskflowAPI (class in taskflowbackend.api)

 	TaskflowAPI.CleanupException

 	TaskflowAPI.FlowSubmitException

 	template_exists() (in module projectroles.templatetags.projectroles_common_tags)

 	timeline.models (module)

 	
 	TimelineAPI (class in timeline.api)

 	timestamp (timeline.models.ProjectEventStatus attribute)

 	title (projectroles.models.Project attribute)

 	(projectroles.plugins.RemoteSiteAppPlugin attribute)

 	type (projectroles.models.AppSetting attribute)

 	(projectroles.models.Project attribute)

U

 	
 	update_cache() (projectroles.plugins.ProjectAppPluginPoint method)

 	(sodarcache.api.SodarCacheAPI class method)

 	url (projectroles.models.RemoteSite attribute)

 	urls (projectroles.plugins.ProjectAppPluginPoint attribute)

 	(projectroles.plugins.RemoteSiteAppPlugin attribute)

 	use_taskflow() (taskflowbackend.api.TaskflowAPI method)

 	
 	user (projectroles.models.AppSetting attribute)

 	(projectroles.models.ProjectUserTag attribute)

 	(projectroles.models.RoleAssignment attribute)

 	(sodarcache.models.BaseCacheItem attribute)

 	(timeline.models.ProjectEvent attribute)

 	user_modifiable (projectroles.models.AppSetting attribute)

V

 	
 	validate_setting() (projectroles.app_settings.AppSettingAPI class method)

 	
 	value (projectroles.models.AppSetting attribute)

 	value_json (projectroles.models.AppSetting attribute)

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/app_projectroles/sodar_home.png
@ Available Projects Filter

Project Description Your Role

& Test Category A test category Superuser
© Test Project Atest project Superuser

Set the content for your footer in include/_footer.ntml. Example Site v0.1.0 / SODAR Core v0.2.1+93.gf7850ed.dirty

_static/app_projectroles/sodar_login.png
LogIn

Please log in.
usemame@DOMAIN

Password

nav.xhtml

 Table of Contents

 		
 Welcome to the SODAR Core documentation!

 		
 Getting Started

 		
 Repository Contents

 		
 Requirements

 		
 Next Steps

 		
 Projectroles App

 		
 Basics

 		
 Projects

 		
 User Roles in Projects

 		
 Remote Project Sync

 		
 Rule System

 		
 Plugins

 		
 Other Features

 		
 Templates and Styles

 		
 Integration

 		
 Installation on a New Site

 		
 Installation on an Existing Site

 		
 Settings

 		
 Site Package and Paths

 		
 Apps

 		
 Database

 		
 Templates

 		
 Email

 		
 Authentication

 		
 Django REST Framework

 		
 General Site Settings

 		
 Projectroles Settings

 		
 Optional Projectroles Settings

 		
 Backend App Settings

 		
 SODAR API Settings (Optional)

 		
 LDAP/AD Configuration (Optional)

 		
 Modifying SODAR_CONSTANTS (Optional)

 		
 Logging (Optional)

 		
 Usage

 		
 Logging In

 		
 User Interface

 		
 Category and Project Management

 		
 Member Management

 		
 Remote Projects

 		
 Search

 		
 Customization

 		
 CSS Overrides

 		
 Title Bar

 		
 Additional Title Bar Links

 		
 Site Icon

 		
 Project Breadcrumb

 		
 Footer

 		
 Project and Category Display Names

 		
 API Documentation

 		
 Plugins

 		
 Models

 		
 App Settings

 		
 Common Template Tags

 		
 Utilities

 		
 Adminalerts App

 		
 Basics

 		
 Installation

 		
 Django Settings

 		
 Optional Settings

 		
 URL Configuration

 		
 Migrate Database and Register Plugin

 		
 Usage

 		
 Bgjobs App

 		
 Installation

 		
 Django Settings

 		
 URL Configuration

 		
 Migrate Database and Register Plugin

 		
 Celery Setup

 		
 Usage

 		
 Filesfolders App

 		
 Installation

 		
 Django Settings

 		
 URL Configuration

 		
 Migrate Database and Register Plugin

 		
 Usage

 		
 Filesfolders UI

 		
 App Settings

 		
 Userprofile App

 		
 Installation

 		
 Django Settings

 		
 URL Configuration

 		
 Register Plugin

 		
 Usage

 		
 User Settings

 		
 Siteinfo App

 		
 Basics

 		
 Installation

 		
 Django Settings

 		
 URL Configuration

 		
 Migrate Database and Register Plugin

 		
 Usage

 		
 Providing App Statistics

 		
 Sodarcache App

 		
 Installation

 		
 Django Settings

 		
 URL Configuration

 		
 Migrate Database and Register Plugin

 		
 Usage

 		
 Backend API for Data Caching

 		
 API

 		
 Backend API

 		
 Models

 		
 Taskflow Backend

 		
 Basics

 		
 Installation

 		
 Django Settings

 		
 Register Plugin

 		
 Usage

 		
 API Documentation

 		
 Timeline App

 		
 Installation

 		
 Django Settings

 		
 Optional Settings

 		
 URL Configuration

 		
 Migrate Database and Register Plugin

 		
 Usage

 		
 Timeline UI

 		
 Backend API for Event Logging

 		
 API Documentation

 		
 Backend API

 		
 Models

 		
 Development

 		
 General Guidelines

 		
 Project Apps

 		
 Project App Basics

 		
 Prerequisites

 		
 Models

 		
 Rules File

 		
 ProjectAppPlugin

 		
 Views

 		
 Templates

 		
 General Guidelines for Views and Templates

 		
 Forms

 		
 Specific Views and Templates

 		
 Project Search Function and Template

 		
 Tour Help

 		
 API Views

 		
 TODO

 		
 Site Apps

 		
 Site App Basics

 		
 Prerequisites

 		
 Models

 		
 Rules File

 		
 SiteAppPlugin

 		
 Views

 		
 Templates

 		
 Site App Messages

 		
 Backend Apps

 		
 Backend App Basics

 		
 Prerequisites

 		
 Models

 		
 BackendAppPlugin

 		
 SODAR Core

 		
 Installation

 		
 Testing

 		
 Contributing

 		
 Breaking Changes

 		
 v0.6.2 (2019-06-21)

 		
 System Prerequisites

 		
 Template Tag for Django Settings Access Renamed

 		
 v0.6.1 (2019-06-05)

 		
 App Settings Deprecation Protection Removed

 		
 v0.6.0 (2019-05-10)

 		
 App Settings (Formerly Project Settings)

 		
 v0.5.1 (2019-04-16)

 		
 Site App Templates

 		
 Sodarcache App Changes

 		
 Helper get_app_names() Fixed

 		
 Default Admin Setting Deprecation Removed

 		
 v0.5.0 (2019-04-03)

 		
 Default Admin Setting Renamed

 		
 Bootstrap 4.3.1 Upgrade

 		
 Default Templates Modified

 		
 v0.4.5 (2019-03-06)

 		
 System Prerequisites

 		
 User Autocomplete Widget Support

 		
 Project.get_delegate() Helper Renamed

 		
 Bootstrap 4 Crispy Forms Overrides Removed

 		
 Database File Upload Widget

 		
 v0.4.4 (2019-02-19)

 		
 Textarea Height in Forms

 		
 v0.4.3 (2019-01-31)

 		
 SODAR Constants

 		
 v0.4.2 (2019-01-25)

 		
 System Prerequisites

 		
 ProjectAccessMixin

 		
 Base API View

 		
 Taskflow Backend API

 		
 v0.4.1 (2019-01-11)

 		
 System Prerequisites

 		
 Site Messages in Login Template

 		
 v0.4.0 (2018-12-19)

 		
 List Button Classes in Templates

 		
 SODAR Taskflow v0.3.1 Required

 		
 Taskflow Secret String

 		
 v0.3.0 (2018-10-26)

 		
 Remote Site Setup

 		
 General API Settings

 		
 DataTables Includes

_static/app_filesfolders/sodar_filesfolders.png
I Small Files

> root
Name

8 test_folder

& Web Link

B example.jpg @

[® ms_powerpoint_xml.pptx
[A reportl. pdf %

[test_basic.zip

Size

69.1KB

33.6KB

78KB

72.2KB

Description

This is a subfolder

Thisis a link

Example description

Powerpoint test

Publicly available file

Testarchive

Owner

admin

admin

admin

admin

admin

admin

Updated

2019-01-09 16:58

2019-01-09 16:56

2019-01-09 16:55

2019-01-09 16:56

2019-01-09 16:58

2019-01-09 16:58

_static/app_projectroles/sodar_category_create.png
Create Top Level Category

Title*

Title

‘Owner*

Ouwner

Description

Short description

Readme

B I ® € o=

HTML Preview:

README (optional, supports markdown)

_static/app_projectroles/sodar_remote_projects.png
ﬁ SODAR Core Example Site

List

& Example Dev Target

& Target Projects
Project Accessed Level

Test Category / Test Project Never Read members j

_static/app_projectroles/sodar_remote_sites.png
& Remote Sites

& Target Sites
Name URL

Example Dev Target http/0.0.0.0:8001

Your site is in SOURCE mode.

Projects

1

Token

ukilshanoswfmjfnt6tdl2gedwiailx

Accessed

Never

_static/app_projectroles/sodar_project_detail.png
& ReadMe

No ReadMe is currently set for this project. You can update the ReadMe here.

@ Project Timeline Overview

@ Timeline of project events

Timestamp Event User
2018-10-1614:26:14 update_remote admin
2018-10-1518:39:34 project create admin

«f Example Project App Overview

@ This is a minimal example for a project app

Description

update remote access for site Example Dev Target ©
to READ_ROLES)

create project with admin @ as owner

This is the project overview card for exanple_project_app

Status

OK

_static/app_projectroles/sodar_project_update.png
Test Core Project v updatng descripion

Update Project

Title*

Test Core Project
Tile
Owner*

admin

Ovner
Description

Thisis a test project

Short description
Readme

B/ ® ¢

#£TODO
* Add readme here
*Update documentation screenshots

HTML Preview:

_static/app_projectroles/sodar_role_list.png
ﬁ SODAR Core Example Site

> Test Category / Test Project

Test Project v acestpojec

& Project Members

&+ Add Member
User Name Email Role < Send Invite

& View Members
admin project owner

= View Invites

€ Import Members

_static/up.png

_images/sodar_home.png
@ Available Projects Filter

Project Description Your Role

& Test Category A test category Superuser
© Test Project Atest project Superuser

Set the content for your footer in include/_footer.ntml. Example Site v0.1.0 / SODAR Core v0.2.1+93.gf7850ed.dirty

_images/sodar_login.png
LogIn

Please log in.
usemame@DOMAIN

Password

_images/sodar_category_create.png
Create Top Level Category

Title*

Title

‘Owner*

Ouwner

Description

Short description

Readme

B I ® € o=

HTML Preview:

README (optional, supports markdown)

_images/sodar_filesfolders.png
I Small Files

> root
Name

8 test_folder

& Web Link

B example.jpg @

[® ms_powerpoint_xml.pptx
[A reportl. pdf %

[test_basic.zip

Size

69.1KB

33.6KB

78KB

72.2KB

Description

This is a subfolder

Thisis a link

Example description

Powerpoint test

Publicly available file

Testarchive

Owner

admin

admin

admin

admin

admin

admin

Updated

2019-01-09 16:58

2019-01-09 16:56

2019-01-09 16:55

2019-01-09 16:56

2019-01-09 16:58

2019-01-09 16:58

_static/app_projectroles/sodar_user_dropdown.png
Fily

admin

A Alerts

+ Example Site App
& Remote Site Access
@ User Profile

& Admin

® Log Out

_static/app_timeline/sodar_timeline.png
© Project Timeline

Timestamp

2019-01-09 16:58:27

2019-01-09 16:58:12

2019-01-09 16:58:01

2019-01-09 16:57:35

2019-01-09 16:57:08

2019-01-09 16:56:57

2019-01-09 16:56:19

2019-01-09 16:56:04

App

filesfolders

filesfolders

filesfolders

projectroles

filesfolders

filesfolders

filesfolders

filesfolders

Event

folder_update

file_update

file_create

project_update

file_update

hyperlink_create

file_create

file_create

User

admin

admin

admin

admin

admin

admin

admin

admin

Description

update folder test_folder © (description)

update file test_basic.zip © (flag)

create file reportl.pdf ©

update project (settings.filesfolders.allow_public_links)

update file test_basic.zip © (description)

create hyperlink Web Link ©

create file ms_powerpoint_xml.pptx ©

create file test_basic.zip ©

_images/sodar_project_update.png
Test Core Project v updatng descripion

Update Project

Title*

Test Core Project
Tile
Owner*

admin

Ovner
Description

Thisis a test project

Short description
Readme

B/ ® ¢

#£TODO
* Add readme here
*Update documentation screenshots

HTML Preview:

_images/sodar_remote_projects.png
ﬁ SODAR Core Example Site

List

& Example Dev Target

& Target Projects
Project Accessed Level

Test Category / Test Project Never Read members j

_images/sodar_project_detail.png
& ReadMe

No ReadMe is currently set for this project. You can update the ReadMe here.

@ Project Timeline Overview

@ Timeline of project events

Timestamp Event User
2018-10-1614:26:14 update_remote admin
2018-10-1518:39:34 project create admin

«f Example Project App Overview

@ This is a minimal example for a project app

Description

update remote access for site Example Dev Target ©
to READ_ROLES)

create project with admin @ as owner

This is the project overview card for exanple_project_app

Status

OK

_images/sodar_timeline.png
© Project Timeline

Timestamp

2019-01-09 16:58:27

2019-01-09 16:58:12

2019-01-09 16:58:01

2019-01-09 16:57:35

2019-01-09 16:57:08

2019-01-09 16:56:57

2019-01-09 16:56:19

2019-01-09 16:56:04

App

filesfolders

filesfolders

filesfolders

projectroles

filesfolders

filesfolders

filesfolders

filesfolders

Event

folder_update

file_update

file_create

project_update

file_update

hyperlink_create

file_create

file_create

User

admin

admin

admin

admin

admin

admin

admin

admin

Description

update folder test_folder © (description)

update file test_basic.zip © (flag)

create file reportl.pdf ©

update project (settings.filesfolders.allow_public_links)

update file test_basic.zip © (description)

create hyperlink Web Link ©

create file ms_powerpoint_xml.pptx ©

create file test_basic.zip ©

_images/sodar_user_dropdown.png
Fily

admin

A Alerts

+ Example Site App
& Remote Site Access
@ User Profile

& Admin

® Log Out

_images/sodar_remote_sites.png
& Remote Sites

& Target Sites
Name URL

Example Dev Target http/0.0.0.0:8001

Your site is in SOURCE mode.

Projects

1

Token

ukilshanoswfmjfnt6tdl2gedwiailx

Accessed

Never

_images/sodar_role_list.png
ﬁ SODAR Core Example Site

> Test Category / Test Project

Test Project v acestpojec

& Project Members

&+ Add Member
User Name Email Role < Send Invite

& View Members
admin project owner

= View Invites

€ Import Members

_static/comment-bright.png

_static/ajax-loader.gif

